bzoj4987 Tree [树形背包]

29 篇文章 0 订阅
5 篇文章 0 订阅

Description:
从前有棵树。
找出 K K 个点A1A2Ak
使得 dis(Ai,Ai+1),(1<=i<=K1) ∑ d i s ( A i , A i + 1 ) , ( 1 <= i <= K − 1 ) 最小


Solution:
有一个结论是这些点必然是一个连通块。
这样我们可以 dp d p 。设 dp[i][j][0/1/2] d p [ i ] [ j ] [ 0 / 1 / 2 ] 表示根为 i i 的子树,选了j个点,两个端点都在 i/ i / 一个在 i i <script type="math/tex" id="MathJax-Element-183">i</script>另一个在连通块叶子结点/两个都在叶子结点。
然后转移即可。


#include <bits/stdc++.h>
using namespace std;
const int N = 3005;
struct edge {
    int nxt, to, w;
} e[N << 1];
int n, cnt = 1, k;
int h[N], dp[N][N][3], sz[N];
void link(int u, int v, int w) {
    e[++cnt].nxt = h[u];
    h[u] = cnt;
    e[cnt].to = v;
    e[cnt].w = w;
} 
void dfs(int u, int last) {
    sz[u] = 1;
    dp[u][0][0] = 0;    
    dp[u][0][1] = 0;
    for(int i = h[u]; i; i = e[i].nxt) {
        int v = e[i].to;
        if(v != last) {
            dfs(v, u);
            for(int j = sz[u] - 1; ~j; --j) {
                for(int k = sz[v] - 1; ~k; --k) {
            //      dp[u][j + k + 1][0] = min(dp[u][j + k + 1][0], dp[u][j][0] + dp[v][k][0] + 2 * e[i].w);
            //      dp[u][j + k + 1][1] = min(dp[u][j + k + 1][1], dp[u][j][0] + dp[v][k][1] + e[i].w);
            //      dp[u][j + k + 1][1] = min(dp[u][j + k + 1][1], dp[u][j][1] + dp[v][k][0] + 2 * e[i].w);
            //      dp[u][j + k + 1][2] = min(dp[u][j + k + 1][2], dp[u][j][1] + dp[v][k][1] + e[i].w);
            //      dp[u][j + k + 1][2] = min(dp[u][j + k + 1][2], dp[u][j][0] + dp[v][j][2] + 2 * e[i].w);
            //      dp[u][j + k + 1][2] = min(dp[j][j + k + 1][2], dp[u][j][2] + dp[v][j][0] + 2 * e[i].w);
                    for(int l = 2; ~l; --l) {
                        for(int m = l; ~m; --m) {
                            dp[u][j + k + 1][l] = min(dp[u][j + k + 1][l], dp[u][j][l - m] + dp[v][k][m] + (2 - (m & 1)) * e[i].w); 
                        }
                    }
                }
            }
            sz[u] += sz[v];
        }
    }
}
int main() {
    scanf("%d%d", &n, &k);
    for(int i = 1; i < n; ++i) {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        link(u, v, w);
        link(v, u, w);
    }
    memset(dp, 0x3f3f, sizeof(dp));
    dfs(1, 0);
    int ans = 1e9;
    for(int i = 1; i <= n; ++i) {
        ans = min(ans, min(dp[i][k - 1][1], dp[i][k - 1][2]));
    }
    printf("%d\n", ans);
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值