cogs2259 异化多肽 [多项式求逆]

Description:
M M 种氨基酸,已知其相对分子质量分别为C1,C2,C3,经过精密的脱水缩合后形成了大量各种各样的肽链。需要预测有多少种多肽链水解后相对分子质量和为 N N (ABC CBA C − B − A 两条肽链视为不同)


Solution:
考虑把所有元素建成一个生成函数 A(x) A ( x ) ,那么答案就是 i=0A(x)i ∑ i = 0 ∞ A ( x ) i
根据无穷等比数列公式得出答案:
11A(x) 1 1 − A ( x )
多项式求逆即可。


    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    const int maxn = 4e5 + 5, P = 1005060097;
    int n, m, N, len;
    ll a[maxn], b[maxn], tmp[maxn];
    ll power(ll x, ll t) {
        ll ret = 1;
        for(; t; t >>= 1, x = x * x % P) {
            if(t & 1) {
                ret = ret * x % P;
            }
        }
        return ret;
    }
    void ntt(ll *a, int f) {
        for(int i = 0; i < N; ++i) {
            int t = 0;
            for(int j = 0; j < len; ++j) {
                if(i >> j & 1) {
                    t |= 1 << (len - j - 1);
                }
            }
            if(i < t) {
                swap(a[i], a[t]);
            }
        }
        for(int l = 2; l <= N; l <<= 1) {
            int m = l >> 1;
            ll w = power(5, f == 1 ? (P - 1) / l : P - 1 - (P - 1) / l);
            for(int i = 0; i < N; i += l) {
                ll t = 1;
                for(int k = 0; k < m; ++k, t = t * w % P) {
                    ll x = a[i + k], y = t * a[i + m + k] % P;
                    a[i + k] = (x + y) % P;
                    a[i + m + k] = (x - y + P) % P; 
                }
            }
        }
        if(f == -1) {
            ll inv = power(N, P - 2);
            for(int i = 0; i < N; ++i) {
                a[i] = a[i] * inv % P;
            }
        }
    }
    void poly_inv(ll *a, ll *b, int l) {
        if(l == 1) {
            b[0] = power(a[0], P - 2);
            return;
        }
        poly_inv(a, b, l >> 1);
        N = 1;
        len = 0;
        while(N <= l) {
            N <<= 1;
            ++len;
        }
        for(int i = 0; i < l; ++i) {
            tmp[i] = a[i];
        }
        for(int i = l; i < N; ++i) {
            tmp[i] = 0;
        }
        ntt(tmp, 1);
        ntt(b, 1);
        for(int i = 0; i < N; ++i) {
            b[i] = b[i] * (2 - tmp[i] * b[i] % P + P) % P;
        }
        ntt(b, -1);
        for(int i = l; i < N; ++i) {
            b[i] = 0;
        }
    }
    int main() {
        freopen("polypeptide.in", "r", stdin);
        freopen("polypeptide.out", "w", stdout);
        scanf("%d%d", &n, &m);
        ++a[0];
        for(int i = 1; i <= m; ++i) {
            int x;
            scanf("%d", &x);
            --a[x];
        }
        len = 1;
        while(len <= n) {
            len <<= 1;
        }
        poly_inv(a, b, len);
        printf("%lld\n", b[n]);
        fclose(stdin);
        fclose(stdout);
        return 0;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值