题目:
Given a permutation which may contain repeated numbers, find its index in all the permutations of these numbers, which are ordered in lexicographical order. The index begins at 1.
Example
注意index可能会超过int的表示范围。
Given the permutation [1, 4, 2, 2]
, return 3
.
def get_ranks(words):
cc = {}
def inv(a, n):
t, nt = 0, 1
r, nr = n, a
while nr != 0:
q = r / nr
t, nt = nt, t - q * nt
r, nr = nr, r - q * nr
if t < 0: t += n
return t
def fact(n, M):
if n == 1: return 1
if n not in cc:
cc[n] = (fact(n - 1, M) * n) % M
return cc[n]
def perm(w):
M = int(1e9+7)
n = len(w)
w = sorted(w)
x = fact(n, M)
y = 1
xs = [0] + filter(lambda i:w[i] != w[i - 1], range(1, n)) + [n]
for i in xrange(1, len(xs)):
y = (y * fact(xs[i] - xs[i - 1], M)) % M
return (x * inv(y, M)) % M
def cnt(w):
t = 0
x, rest = w[0], w[1:]
v = set()
for i in xrange(len(rest)):
c = rest[i]
if c < x and not c in v:
v.add(c)
t = (t + perm(rest[:i] + x + rest[i+1:])) % int(1e9+7)
return t
ret = []
for word in words:
c = 0
n = len(word)
for i in xrange(n - 1):
c = (c + cnt(word[i:])) % int(1e9+7)
ret.append(c)
return ret
def get_rank(words):
ret = []
for i in range(len(words)):
cur = words[i]
hashmap = {}
index, fact, divident = 0, 1, 1
for j in range(len(cur) - 1, -1, -1):
if cur[j] in hashmap:
hashmap[cur[j]] += 1
divident = (divident * hashmap[cur[j]])
else:
hashmap[cur[j]] = 1
rank = 0
for k in range(j + 1, len(cur)):
if ord(cur[j]) > ord(cur[k]):
rank += 1
#index += (rank * fact % int(1e9+7) / divident)
index += (rank * fact / divident)
fact *= len(cur) - j
ret.append(index % int(1e9+7))
return ret
def main():
#f = open(os.environ['OUTPUT_PATH'], 'w')
_words_cnt = int(raw_input())
_words_i = 0
_words = []
while _words_i < _words_cnt:
_words_item = raw_input()
_words.append(_words_item)
_words_i += 1
res = get_ranks(_words)
print res
res2 = get_rank(_words)
print res2