# Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
return findMedianSortedArrays1(nums1,nums2);
}
public double findMedianSortedArrays1(int A[], int B[]) {
int n = A.length;
int m = B.length;
// the following call is to make sure len(A) <= len(B).
// yes, it calls itself, but at most once, shouldn't be
// consider a recursive solution
if (n > m)
return findMedianSortedArrays(B, A);

// now, do binary search
int k = (n + m - 1) / 2;
int l = 0, r = Math.min(k, n); // r is n, NOT n-1, this is important!!
while (l < r) {
int midA = (l + r) / 2;
int midB = k - midA;
if (A[midA] < B[midB])
l = midA + 1;
else
r = midA;
}

// after binary search, we almost get the median because it must be between
// these 4 numbers: A[l-1], A[l], B[k-l], and B[k-l+1]

// if (n+m) is odd, the median is the larger one between A[l-1] and B[k-l].
// and there are some corner cases we need to take care of.
int a = Math.max(l > 0 ? A[l - 1] : Integer.MIN_VALUE, k - l >= 0 ? B[k - l] : Integer.MIN_VALUE);
if (((n + m) & 1) == 1)
return (double) a;

// if (n+m) is even, the median can be calculated by
//      median = (max(A[l-1], B[k-l]) + min(A[l], B[k-l+1]) / 2.0
// also, there are some corner cases to take care of.
int b = Math.min(l < n ? A[l] : Integer.MAX_VALUE, k - l + 1 < m ? B[k - l + 1] : Integer.MAX_VALUE);
return (a + b) / 2.0;
}
}
https://leetcode.com/discuss/11174/share-my-iterative-solution-with-o-log-min-n-m 