复变函数 —— 1. 复数的定义

0. 什么是「复数」

我们都知道,如果数 − 1 \sqrt {-1} 1 不扩展的话,那么这个计算就毫无意义。所以,为了解决 − 1 \sqrt {-1} 1 的问题,我们让数的概念从实数域扩展到复数域,以 j 2 = − 1 j^2 = -1 j2=1 表示(某些教材以 i 2 = − 1 i^2 = -1 i2=1表示虚数,但我个人建议你最好习惯使用 j j j 表示虚数)。这定义有非常重要的作用,它使得任意多项式的方程都有根,如果一个数包含虚数部分,那么可以被表示为

z = x + y j z = x + y j z=x+yj

x x x 称为「实部」, y y y 称为「虚部」。

1. 什么是「共轭复数」

在数学中,复数的共轭复数(常简称共轭)是对虚部变号的运算,因此一个复数 z = x + y j z = x + yj z=x+yj 的共轭可以表示为 z ˉ = x − y j \bar z = x - yj zˉ=xyj。如果把复数也像实数那样投影到欧氏空间中,那么互为「共轭」的复数,可以被表示如下:

在这里插入图片描述
我们以横轴表示实数部,纵轴表示虚数部。所谓共轭的复数就是关于X轴方向对称的两个线段(或者说向量)。因此,它便有了:

  • 与实数轴X的夹角为 φ \varphi φ
  • 模长相等,且长度为 r = x 2 + y 2 r = \sqrt{ x^2 + y^2} r=x2+y2
  • 在实数轴X上的投影长为 ∣ x ∣ |x| x
  • 在虚数轴Y上的投影长为 ∣ y ∣ |y| y
  • 或者在球坐标系里, z = x + y j z = x + yj z=x+yj 可以被表示为 z = r ( cos ⁡ φ + j sin ⁡ φ ) z = r(\cos \varphi + j \sin \varphi) z=r(cosφ+jsinφ)
  • 亦或者在欧拉方程中,以自然指数形式表示为 z = r e j φ z = r e^{j \varphi} z=rejφ

球坐标系下,x,y,z都可以表示为

{ x = r cos ⁡ ϕ cos ⁡ θ y = r cos ⁡ ϕ sin ⁡ θ z = r sin ⁡ θ \left \{ \begin{matrix} x = r \cos \phi \cos \theta \\ y = r \cos \phi \sin \theta \\ z = r \sin \theta \end{matrix} \right . x=rcosϕcosθy=rcosϕsinθz=rsinθ
在这里插入图片描述

这些性质给复数带来了一些很有意思的应用,比如不同坐标系之间的映射关系:

复数 1 2 − 3 2 j \frac{1}{2} - \frac{\sqrt 3}{2} j 2123 j 的指数形式为 _______ 三角形式为_____
解:
r = [ 1 2 ] 2 + [ 3 2 ] = 1 r = \sqrt{ \left[ \frac{1}{2} \right ]^2 + \left [ \frac{3}{2} \right ] } = 1 r=[21]2+[23] =1
ϕ = arctan ⁡ ( 3 2 / 1 2 ) = arctan ⁡ 3 \phi = \arctan (\frac{\sqrt 3}{2} / \frac{1}{2}) = \arctan \sqrt 3 ϕ=arctan(23 /21)=arctan3 得到夹角 ϕ = π / 3 \phi = \pi /3 ϕ=π/3
又可以从欧拉公式得到
z = r e j ϕ = e π 3 j z = r e^{j \phi} = e^{\frac{\pi}{3} j} z=rejϕ=e3πj

以及由球坐标系得到
z = cos ⁡ π 3 + j sin ⁡ π 3 z = \cos \frac{\pi}{3} + j \sin{\pi}{3} z=cos3π+jsinπ3

2. 复数的基本运算规则

2.1. 加减运算

( x 1 + y 1 j ) ± ( x 2 + y 2 j ) = ( x 1 ± x 2 ) + ( y 1 ± y 2 ) j (x_1 + y_1 j) \pm (x_2 + y_2 j) = (x_1 \pm x_2) + (y_1 \pm y_2) j (x1+y1j)±(x2+y2j)=(x1±x2)+(y1±y2)j

这个运算性质与向量的加减类似。

2.2. 乘法运算

( x 1 + y 1 j ) ( x 2 + y 2 j ) = x 1 x 2 + x 1 y 2 j + y 1 x 2 j + y 1 y 2 j 2 = ( x 1 x 2 − y 1 y 2 ) + ( x 1 y 2 + y 1 x 2 ) j (x_1 + y_1 j) (x_2 + y_2 j) = x_1 x_2 + x_1 y_2 j + y_1 x_2 j + y_1 y_2 j^2 \\ = ( x_1 x_2 - y_1 y_2) + (x_1 y_2 + y_1 x_2 ) j (x1+y1j)(x2+y2j)=x1x2+x1y2j+y1x2j+y1y2j2=(x1x2y1y2)+(x1y2+y1x2)j

2.3. 除法运算

x 1 + y 1 j x 2 + y 2 j = ( x 1 + y 1 j x 2 + y 2 j ) ( x 2 − y 2 j x 2 − y 2 j ) \frac{x_1 + y_1 j}{x_2 + y_2 j} = \left ( \frac{x_1 + y_1 j}{x_2 + y_2 j} \right ) \left( \frac{x_2 - y_2 j}{x_2 - y_2 j} \right ) x2+y2jx1+y1j=(x2+y2jx1+y1j)(x2y2jx2y2j)

注意,由于分子分母同时乘以了分母的共轭,所以分母直接等于了 x 2 2 + y 2 2 x_2^2 + y_2^2 x22+y22,于是上面的除法就变成了

x 1 + y 1 j x 2 + y 2 j = ( x 1 x 2 + y 1 y 2 ) + ( x 2 y 1 − x 2 y 2 ) j x 2 2 + y 2 2 \frac{x_1 + y_1 j}{x_2 + y_2 j} = \frac{(x_1 x_2 + y_1 y_2) + (x_2 y_1 - x_2 y_2) j}{x_2^2 + y_2^2} x2+y2jx1+y1j=x22+y22(x1x2+y1y2)+(x2y1x2y2)j

这个很容易推导,不必记忆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值