复变函数论1-1-复数5:共轭复数【设z=x+iy,则z的共轭复数为z*=x-iy】【复平面上, z与z*两点关于实轴是对称点】【Argz=-Argz*】

本文介绍了复数的共轭性质,包括|z_>|=|z|,Arg(z_*)=-Arg(z),以及复平面上z与z_关于实轴对称。还通过例子展示了共轭复数在求解复数实部、虚部、模以及证明三角不等式中的应用。
摘要由CSDN通过智能技术生成

z = x + i y z=x+\mathrm{i} y z=x+iy, 则 z z z 的共轭复数为 z ˉ = x − i y \bar{z}=x-\mathrm{i} y zˉ=xiy.

显然

∣ z ˉ ∣ = ∣ z ∣ , Arg ⁡ z ˉ = − Arg ⁡ z . |\bar{z}|=|z|, \quad \operatorname{Arg} \bar{z}=-\operatorname{Arg} z . zˉ=z,Argzˉ=Argz.

这表明在复平面上, z z z z ˉ \bar{z} zˉ 两点关于实轴是对称点.

我们也容易验证下列公式:

  1. ( z ˉ ) ‾ = z , z 1 ± z 2 ‾ = z ˉ 1 ± z ˉ 2 \overline{(\bar{z})}=z, \overline{z_{1} \pm z_{2}}=\bar{z}_{1} \pm \bar{z}_{2} (zˉ)=z,z1±z2=zˉ1±zˉ2.
  2. z 1 z 2 ‾ = z ˉ 1 z ˉ 2 , ( z 1 z 2 ) ‾ = z ˉ 1 z ˉ 2 ( z 2 ≠ 0 ) \overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}, \overline{\left(\cfrac{z_{1}}{z_{2}}\right)}=\cfrac{\bar{z}_{1}}{\bar{z}_{2}} \quad\left(z_{2} \neq 0\right) z1z2=zˉ1zˉ2,(z2z1)=zˉ2zˉ1(z2=0).
  3. ∣ z ∣ 2 = z z ˉ , Re ⁡ z = z + z ˉ 2 , Im ⁡ z = z − z ˉ 2 i |z|^{2}=z \bar{z}, \operatorname{Re} z=\cfrac{z+\bar{z}}{2}, \operatorname{Im} z=\cfrac{z-\bar{z}}{2 \mathrm{i}} z2=zzˉ,Rez=2z+zˉ,Imz=2izzˉ.
  4. R ( a , b , c , ⋯   ) R(a, b, c, \cdots) R(a,b,c,)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值