机器学习 | 5种基于机器学习的客户价值预测分析方法

本文探讨了预测客户价值的5种机器学习方法,包括DNN、LightGBM、XGBoost和CatBoost。通过实验,发现DNN因样本少易过拟合,而LightGBM、XGBoost和CatBoost表现较优,但仍有预测偏差。集成学习方法略微改善了预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目目的:预测客户的交易价值

数据来源:https://www.kaggle.com/c/santander-value-prediction-challenge

数据内容:4459条已知客户的交易价值和客户的属性(具体内容不知道,有可能是性别、年龄、收入、交税等等,每一个用户有4993条属性)

步骤:

  • 数据分析
  • 特征值选取
  • 模型建立
  • 调试

 

首先进行数据分析

有4459行,4993列,其实中1845列为float类型,3147列为int类型,有1列为object(应该为用户id)

 

观察发现特征值数量较大

初步处理:去掉常数列,去掉重复列

数据由4993变为4732

由于特征值太多,难以作图分析

直接使用所有特征值

对需要预测值分析,观察数据分布(下图左),大部分数据集中在左侧,做log处理使数据更符合高斯分布&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值