Ollama测试本地部署大模型性能

在使用 Ollama 部署大模型后,可以通过以下方法对本地模型的性能进行测试和监控:


1. 使用 --verbose 参数监控资源消耗

Ollama 提供了 --verbose 参数,用于实时监控模型运行时的资源消耗(如显存占用、推理速度等):

ollama run <model_name> --verbose

输出示例

total duration: 12m1.056s   # 总耗时
load duration: 1.810s        # 模型加载时间
eval rate: 2.09 tokens/s     # 生成速度(每秒生成的 token 数)

关键指标

  • 加载时间:模型启动到可交互的时间。
  • 生成速度:模型生成文本的速度,反映硬件利用率(如 GPU 加速效果)。
  • 资源占用:通过系统任务管理器或 nvidia-smi(NVIDIA 显卡)查看 CPU/内存/GPU 显存占用。

2. 性能基准测试

(1) 响应时间测量

通过命令行交互或 API 调用,记录模型从接收到请求到返回结果的时间:

# 命令行测试
ollama run <model_name>
# 输入问题后按 Ctrl+D 提交,记录等待时间
(2) API 调用测试

使用 curl 或 Python 脚本模拟高并发请求,测试模型的吞吐量和稳定性:

# 查看模型列表
curl http://localhost:11434/v1/models

# 发送请求并计算响应时间
time curl -X POST "http://localhost:11434/v1/completions" \
  -H "Content-Type: application/json" \
  -d '{"model": "deepseek-r1:7b", "prompt": "你好"}'
(3) 批量测试脚本

编写脚本批量发送请求,统计平均响应时间和错误率:

import timeit
import requests

def test_performance():
    url = "http://localhost:11434/v1/completions"
    payload = {"model": "deepseek-r1:7b", "prompt": "你好"}
    start_time = timeit.default_timer()
    response = requests.post(url, json=payload)
    end_time = timeit.default_timer()
    print(f"Response Time: {end_time - start_time:.4f} seconds")
    print(f"Response: {response.json()}")

test_performance()

3. 硬件资源监控

(1) GPU 显存占用
  • NVIDIA 显卡:使用 nvidia-smi 实时监控显存占用:

    nvidia-smi -l 1s  # 每秒刷新一次
    
  • Intel GPU:通过任务管理器或 intel_gpu_top 工具查看资源占用。

(2) CPU 和内存占用
  • 使用系统自带的任务管理器(Windows)或 htop(Linux/macOS)监控 CPU 和内存使用情况。

4. 调整参数优化性能

根据测试结果,调整以下参数以优化性能:

  1. 批量大小(Batch Size)

    • 增加批量大小可提高硬件利用率,但需避免显存溢出。

    • 修改配置文件或通过环境变量设置:

      export OLLAMA_BATCH_SIZE=32
      
  2. 最大序列长度(Max Sequence Length)

    • 根据输入需求调整序列长度,避免内存浪费:

      # Modelfile 示例
      model_name: mymodel
      max_sequence_length: 2048
      
  3. 并行化处理

    • 多 GPU/CPU 核心可加速推理,通过 --parallel 参数启用:

      ollama run <model_name> --parallel
      
  4. 低精度量化模型

    • 使用量化版本(如 q4_K_Mq3_K_L)降低显存占用:

      ollama run <model_name>:q4_K_M
      

5. 日志分析与问题排查

  • 查看详细日志

    ollama run <model_name> --verbose
    
  • 常见问题

    • 显存不足:尝试使用轻量模型(如 deepseek:1.5b)或低精度版本。
    • 模型无响应:检查 Modelfile 配置(如路径、模板参数)是否正确。
    • 下载中断:使用 ollama pull <model> 重新下载,保留进度。

6. 性能对比与调优建议

场景推荐配置
小模型(如 1.5B)CPU + 8GB 内存,无需 GPU
中等模型(如 7B)GPU 显存 ≥ 8GB,启用 --verbose 监控
大模型(如 14B+)GPU 显存 ≥ 32GB,使用量化模型(如 q4_K_M
高并发请求增加批量大小,启用并行化处理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值