0-1背包问题

0-1背包问题
在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。
输入

第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)

输出

输出可以容纳的最大价值。

输入示例

3 6
2 5
3 8
4 9

输出示例

14

0-1背包问题: 第一想法是? (1) 枚举?万能的枚举啊。但对于n件物品,每件都可以选择取或者不取,总的可能性有2n, n = 30就大约已经有10亿种可能了!枚举所有可能选择一种不超过背包承重并且价值最大的物品组合,枚举量太大了。 (2) 贪心? 嗯,有点意思。先选最贵重的物品? 找个反例:
n = 3, m = 3
v = (2,2,3)
w = (1,2,3)

按照先选贵重物品的策略,会先选择价值为3的那个,并且背包装满了,但是如果我们选取前两个物品,总价值可以达到4。
可能你已经想到了,考虑“性价比”,先选取“性价比”高的。性价比怎么定义呢?用价值除以重量!先选取单位重量价值最大的物品试试?
(3) 试试动态规划?
我们从1-n一件一件选择物品,为什么要记录之前选择了哪些物品呢? 因为我们要计算重量和价值,那我们能不能只记录重量和价值呢?可以的。
令f(i,j)表示选决定了前i件物品,重量恰好为j的时候能获得的最大价值。
假设我们已经知道了全部的f(i-1,*)的值,如何求f(i,*),换句话说我们有了状态表示还不够,如何求出递推式?
对f(i,j)如果我们不选取第i件物品,则显然f(i, j) = f(i – 1,j)
如果我们要选取第i件物品,那么前i – 1件物品必须要达到j - wi且价值最大。由我们对f的定义,有f(i,j) = f(i-1,j - wi) + vi, 那么我们究竟选不选第i件物品呢?只好看哪个大了值大了,所以由
 f(i,j) = max(f(i – 1, j) , f(i-1,j - wi) + vi);
当然只有j>= wi的时候我们才有选择第i件物品的权力。
那么初值是什么呢?f(0,*),一件物品也不选的时候,显然重量只能是0,其他的重量都不存在,我们用负无穷来表示不可能,因为求的是最大价值嘛。
那么,我们整理一下我们的递推式子和初值:



  f(i,j)=0(i=0j=0)(i=0j>0)f(i1,j)(i>0j<w)max(f(i1,j),f(i1,jwi)+vi)(i>0j>wi)  
那么我们求的值是什么呢? 回想f的定义,最终的答案是背包要装的物品价值最大。那么答案应该
 
max{f[n][i]}  (0<=i<=n) ;
 
 
注意这里i可以等于0——如果背包一件物品都容纳不了呢? 
至此我们的问题得到了解答。
fmax{f[n][i]}  (0<=i<=n) 
核心伪代码:
f(0) = 0
f(1..m) = -∞
for i = 1 to n do
   for j = m downto wi do
       f(j) = max(f(j), f(j - wi))
   endfor
endfor

所求结果是max{f(0..m)}

注意我们循环j只到wi,因为再小的j会导致我们无法选择第i件物品,这时我们直接使用不用第i件物品的旧值就好啦。简单吧?

那么现在,时间复杂度时不变的,空间复杂度降低O(m)了。
尝试换一种状态表示? 我们令f(i,j)表示决定了前i件物品,总重量不超过j时能获得的最大价值。仔细想想递推式是不变的,那么初值呢?如果初值不变,f就没变化了……i= 0时,总重量时0,又因为0不超过任何整数,所以根据定义初值是f(0,*) = 0
那么最终结果呢?根据定义,最终结果是f(n,m)而没有必要再一串数里取最大了。可见即使递推式相同,初值不同也会定义不同的函数,请不要忽略初值的作用啊。同样我们可以优化掉第一维。
核心伪代码:
初值f(0..m) = 0
for i = 1 to n do
    for j = m downto wi do
        f(j) = max(f(j), f(j - wi))
    endfor
endfor
所求结果是f(m);
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=10010;
int dp[maxn],a[maxn],b[maxn];
int main()
{
	int n,m;
	while(scanf("%d %d",&n,&m)!=EOF){
		for(int i=1;i<=n;i++){
			scanf("%d %d",&a[i],&b[i]);
		}
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=n;i++){
			for(int j=m;j>=a[i];j--){
				dp[j]=max(dp[j],dp[j-a[i]]+b[i]);
			}
		}
		printf("%d\n",dp[m]);
	}
return 0;
}










  f(i,j)=0(i=0j=0)(i=0j>0)f(i1,j)(i>0j<w)max(f(i1,j),f(i1,jwi)+vi)(i>0j>wi)  

  f(i,j)=0(i=0j=0)(i=0j>0)f(i1,j)(i>0j<vi)max(f(i1,j),f(i1,jwi)+vi)(i>0j>vi)  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值