计算方法第一课

第一次上课

误差的来源(1.1、1.2)

*模型误差

*测量误差

方法误差(求解近似解)(截断误差)

例:

将多项展开式的后面作为截断误差。

舍入误差

浮点数、误差、误差限、有效数字(1.4)

误差逐步递减,为稳定算法。反之为不稳定算法。

绝对误差

E ( x ∗ ) = x ∗ − x , 其 中 x 为 真 值 , x ∗ 为 x 的 一 个 近 似 值 , E ( x ∗ ) 就 是 绝 对 误 差 。 E(x^*) = x^* - x,其中x为真值,x^*为x的一个近似值,E(x^*)就是绝对误差。 E(x)=xx,xxx,E(x

误差限

若 有 ∣ x − x ∗ ∣ < ε 若有|x-x^*| <\varepsilon xx<ε
ε 为 绝 误 差 限 \varepsilon为绝误差限 ε

有效数字与误差限的关系

若 某一近似值x*拥有n个有效数字,并且其科学计数法(首位非零数在小数点后的第一位)
x ∗ = 0. a 1 a 2 . . . a n ∗ 1 0 m x^* = 0.a_1a_2...a_n * 10^m x=0.a1a2...an10m
那么他的误差限,可以表示为
∣ x − x ∗ ∣ ≤ 0.5 ∗ 1 0 ( m − n ) |x-x^*|\leq 0.5*10^{(m-n)} xx0.510(mn)
反推可得至少有m-n-1位有效数字

有效数字与相对误差和相对误差限(1.4)

相 对 误 差 : E r ( x ∗ ) = E ( x ∗ ) / x 相对误差:Er(x^*) = E(x^*)/x Er(x)=E(x)/x

如果有n位有效数字
相 对 误 差 限 : ε r ≤ ( 1 / 2 a 1 ) ∗ 1 0 ( − n + 1 ) 相对误差限:\varepsilon_r \le (1/2a_1)*10^{(-n+1)} εr(1/2a1)10(n+1)
反推可得至少有n位有效数字

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值