插值多项式

插值多项式

插值法(缺点:计算量太大,计算时间太长。)


g ( x ) 近 似 代 替 f ( x ) [ 复 杂 精 函 数 , 但 数 据 位 离 散 的 函 数 ] g(x)近似代替f(x)[复杂精函数,但数据位离散的函数] g(x)f(x)[]
求一个多项式
p ( x ) = a 0 + a 1 x + a 2 x 2 + . . . . + a n x n p(x) = a_0+a_1x+a_2x^2+....+a_nx^n p(x)=a0+a1x+a2x2+....+anxn
p(x)代替f(x),

在f(x)上取n个点。带入p(x),就可以求出a0,a2,……

其中f(x)为被插值函数,p(x)为插值函数。

在这里,p(x)为插值多项式。

其中n的数值与数组yi有关,即采样的数量。

例:现在有四个插值节点,那么n的值为3。

拉格朗日多项式插值法

基本公式:
P n ( x i ) = ∑ i = 0 n l i ( x ) ∗ y i P_n(x_i) = \sum_{i = 0}^nl_i(x)*y_i Pn(xi)=i=0nli(x)yi

li(x)在当前节点为1,在其他节点为0。只与节点有关与y无关。

线性插值(n = 1)

p1(x0) = y0

p1(x1)= y1

则:p(x) = l0(x)x0 + l1(x)x1

所以p(x)是过(x0,y0),(x1,y!)

满足上述基本公式
l 0 ( x ) = x − x 1 x 0 − x 1 l_0(x) = \frac{x - x1}{x0 - x1} l0(x)=x0x1xx1

l 1 ( x ) = x − x 0 x 1 − x 0 l_1(x) = \frac{x- x_0}{x_1 - x_0} l1(x)=x1x0xx0

抛物插值(n = 2)(n+1个节点)

设二次多项式为

P(x) = l0(x)y0 + l1(x)y1 + l2(x)y2

研究l0(x)

在x1,x2处等于0

所以原式l0(x) = C(x- x1)(x - x2)

其中l0(x0) = 1
所 以 C = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) 所以C =\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} C=(x0x1)(x0x2)(xx1)(xx2)

N次插值多项式

计算方法与抛物插值类似。

拉格朗日插值余项(可能会出证明题)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值