多项式快速插值

11 篇文章 0 订阅

前言

给定一堆点 ( x 1 , y 1 ) , ( x 2 , y 2 ) ⋅ ⋅ ⋅ ( x n , y n ) (x_1,y_1),(x_2,y_2)···(x_n,y_n) (x1,y1),(x2,y2)(xn,yn),求一个 n − 1 n-1 n1次多项式 A ( x ) A(x) A(x)满足 A ( x i ) = y i A(x_i)=y_i A(xi)=yi

做法

先考虑拉格朗日插值
对于每个 i i i求出一个 n − 1 n-1 n1次多项式 G i ( x ) G_i(x) Gi(x)满足 G i ( x i ) = y i G_i(x_i)=y_i Gi(xi)=yi,并且 G i ( x j ) = 0 ( j ≠ i ) G_i(x_j)=0(j\neq i) Gi(xj)=0(j̸=i)
这样一来 L ( x ) = ∑ i = 1 n G i ( x ) L(x)=\sum_{i=1}^nG_i(x) L(x)=i=1nGi(x)

L ( x ) = ∑ i = 0 n ( y i ∏ j = 1 , i ≠ j n x − x j x i − x j ) L(x)=\sum_{i=0}^n\left(y_i\prod_{j=1,i\neq j}^n\frac{x-x_j}{x_i-x_j}\right) L(x)=i=0nyij=1,i̸=jnxixjxxj
也可以换个形式(好像是重心法??
L ( x ) = ( ∏ j = 1 n ( x − x j ) ) ( ∑ i = 0 n y i ( x − x i ) ∏ j = 1 , i ≠ j n ( x i − x j ) ) L(x)=\left(\prod_{j=1}^n(x-x_j)\right)\left(\sum_{i=0}^n\frac{y_i}{(x-x_i)\prod_{j=1,i\neq j}^n(x_i-x_j)}\right) L(x)=(j=1n(xxj))(i=0n(xxi)j=1,i̸=jn(xixj)yi)
本题中,我们将 L ( x ) = ∑ i = 0 n ( y i ∏ j = 1 , i ≠ j n x − x j x i − x j ) L(x)=\sum_{i=0}^n\left(y_i\prod_{j=1,i\neq j}^n\frac{x-x_j}{x_i-x_j}\right) L(x)=i=0nyij=1,i̸=jnxixjxxj
转化成 L ( x ) = ∑ i = 0 n ( y i ∏ j = 1 , i ≠ j n ( x i − x j ) ∏ j = 1 , i ≠ j n ( x − x j ) ) L(x)=\sum_{i=0}^n\left(\frac{y_i}{\prod_{j=1,i\neq j}^n(x_i-x_j)}\prod_{j=1,i\neq j}^n(x-x_j)\right) L(x)=i=0nj=1,i̸=jn(xixj)yij=1,i̸=jn(xxj)
先求 y i ∏ j = 1 , i ≠ j n ( x i − x j ) \frac{y_i}{\prod_{j=1,i\neq j}^n(x_i-x_j)} j=1,i̸=jn(xixj)yi,我们发现分子是一个常数,所以转化成求所有 ∏ j = 1 , i ≠ j n ( x i − x j ) \prod_{j=1,i\neq j}^n(x_i-x_j) j=1,i̸=jn(xixj)
我们设 R ( x ) = ∏ j = 1 n ( x − x j ) R(x)=\prod_{j=1}^n(x-x_j) R(x)=j=1n(xxj)
我们发现 ∏ j = 1 , i ≠ j n ( x i − x j ) = lim ⁡ x → x i R ( x ) x − x i \prod_{j=1,i\neq j}^n(x_i-x_j)=\lim_{x\rightarrow x_i} \frac{R(x)}{x-x_i} j=1,i̸=jn(xixj)=xxilimxxiR(x)
我们发现 lim ⁡ x → x i R ( x ) = 0 \lim_{x\rightarrow x_i}R(x)=0 xxilimR(x)=0并且 lim ⁡ x → x i x − x i = 0 \lim_{x\rightarrow x_i}x-x_i=0 xxilimxxi=0
根据洛必达法则
我们对分子分母分别求导,得到
∏ j = 1 , i ≠ j n ( x i − x j ) = lim ⁡ x → x i R ( x ) x − x i = lim ⁡ x → x i R ′ ( x ) ( x − x i ) ′ = lim ⁡ x → x i ( R ′ ( x ) ) = R ′ ( x i ) \prod_{j=1,i\neq j}^n(x_i-x_j)=\lim_{x\rightarrow x_i} \frac{R(x)}{x-x_i}=\lim_{x\rightarrow x_i} \frac{R'(x)}{(x-x_i)'}=\lim_{x\rightarrow x_i}(R'(x))=R'(x_i) j=1,i̸=jn(xixj)=xxilimxxiR(x)=xxilim(xxi)R(x)=xxilim(R(x))=R(xi)
所以我们只要求出 R ( x ) R(x) R(x)并对其求导,然后进行多项式多点求值即可完成
然后求出值后用每个 y i y_i yi除,即可
v i = y i ∏ j = 1 , i ≠ j n ( x i − x j ) v_i=\frac{y_i}{\prod_{j=1,i\neq j}^n(x_i-x_j)} vi=j=1,i̸=jn(xixj)yi
我们要求的变成
L ( x ) = ∑ i = 0 n ( v i ∏ j = 1 , i ≠ j n ( x − x j ) ) L(x)=\sum_{i=0}^n\left(v_i\prod_{j=1,i\neq j}^n(x-x_j)\right) L(x)=i=0nvij=1,i̸=jn(xxj)
用分治套 N T T NTT NTT即可计算
总复杂度 O ( n l o g 2 n ) \mathcal O(nlog^2n) O(nlog2n)

代码

#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<vector>
namespace fast_IO
{
    const int IN_LEN=10000000,OUT_LEN=10000000;
    char ibuf[IN_LEN],obuf[OUT_LEN],*ih=ibuf+IN_LEN,*oh=obuf,*lastin=ibuf+IN_LEN,*lastout=obuf+OUT_LEN-1;
    inline char getchar_(){return (ih==lastin)&&(lastin=(ih=ibuf)+fread(ibuf,1,IN_LEN,stdin),ih==lastin)?EOF:*ih++;}
    inline void putchar_(const char x){if(oh==lastout)fwrite(obuf,1,oh-obuf,stdout),oh=obuf;*oh++=x;}
    inline void flush(){fwrite(obuf,1,oh-obuf,stdout);}
}
using namespace fast_IO;
#define getchar() getchar_()
#define putchar(x) putchar_((x))
typedef long long ll;
#define rg register
template <typename T> inline T max(const T a,const T b){return a>b?a:b;}
template <typename T> inline T min(const T a,const T b){return a<b?a:b;}
template <typename T> inline T mind(T&a,const T b){a=a<b?a:b;}
template <typename T> inline T maxd(T&a,const T b){a=a>b?a:b;}
template <typename T> inline T abs(const T a){return a>0?a:-a;}
template <typename T> inline void swap(T&a,T&b){T c=a;a=b;b=c;}
template <typename T> inline void swap(T*a,T*b){T c=a;a=b;b=c;}
template <typename T> inline T gcd(const T a,const T b){if(!b)return a;return gcd(b,a%b);}
template <typename T> inline T square(const T x){return x*x;};
template <typename T> inline void read(T&x)
{
    char cu=getchar();x=0;bool fla=0;
    while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}
    while(isdigit(cu))x=x*10+cu-'0',cu=getchar();
    if(fla)x=-x;  
}
template <typename T> void printe(const T x)
{
    if(x>=10)printe(x/10);
    putchar(x%10+'0');
}
template <typename T> inline void print(const T x)
{
    if(x<0)putchar('-'),printe(-x);
    else printe(x);
}
const int maxn=2097152,mod=998244353;
inline int Md(const int x){return x>=mod?x-mod:x;}
template<typename T>
inline int pow(int x,T y)
{
    rg int res=1;x%=mod;
    for(;y;y>>=1,x=(ll)x*x%mod)if(y&1)res=(ll)res*x%mod;
    return res;
}
namespace Poly///namespace of Poly
{
int W_[maxn],ha[maxn],hb[maxn],Inv[maxn];
inline void init(const int x)
{
    rg int tim=0,lenth=1;
    while(lenth<x)lenth<<=1,tim++;
    for(rg int i=1;i<lenth;i<<=1)
    {
    	const int WW=pow(3,(mod-1)/(i*2));
    	W_[i]=1;
    	for(rg int j=i+1,k=i<<1;j<k;j++)W_[j]=(ll)W_[j-1]*WW%mod;
    }
    Inv[0]=Inv[1]=1;
    for(rg int i=2;i<x;i++)Inv[i]=(ll)(mod-mod/i)*Inv[mod%i]%mod;
}
int L;
inline void DFT(int*A)//prepare:init L 
{
    for(rg int i=0,j=0;i<L;i++)
    {
        if(i>j)swap(A[i],A[j]);
        for(rg int k=L>>1;(j^=k)<k;k>>=1);
    }
    for(rg int i=1;i<L;i<<=1)
        for(rg int j=0,J=i<<1;j<L;j+=J)
            for(rg int k=0;k<i;k++)
            {
                const int x=A[j+k],y=(ll)A[j+k+i]*W_[i+k]%mod;
                A[j+k]=Md(x+y),A[j+k+i]=Md(mod+x-y);
            }
}
void IDFT(int*A)
{
    for(rg int i=1;i<L-i;i++)swap(A[i],A[L-i]);
    DFT(A);
}
inline int Quadratic_residue(const int a)
{
    if(a==0)return 0;
    int b=(rand()<<14^rand())%mod;
    while(pow(b,(mod-1)>>1)!=mod-1)b=(rand()<<14^rand())%mod;
    int s=mod-1,t=0,x,inv=pow(a,mod-2),f=1;
    while(!(s&1))s>>=1,t++,f<<=1;
    t--,x=pow(a,(s+1)>>1),f>>=1;
    while(t)
    {
        f>>=1;
        if(pow((int)((ll)inv*x%mod*x%mod),f)!=1)x=(ll)x*pow(b,s)%mod;
        t--,s<<=1;
    }
    return min(x,mod-x);
}
struct poly
{
    std::vector<int>A;
    poly(){A.resize(0);}
    poly(const int x){A.resize(1),A[0]=x;}
    inline int&operator[](const int x){return A[x];}
    inline int operator[](const int x)const{return A[x];}
    inline void clear(){A.clear();}
    inline unsigned int size()const{return A.size();}
    inline void resize(const unsigned int x){A.resize(x);}
    void RE(const int x)
    {
        A.resize(x);
        for(rg int i=0;i<x;i++)A[i]=0; 
    }
    void readin(const int MAX)
    {
        A.resize(MAX);
        for(rg int i=0;i<MAX;i++)read(A[i]);
    }
    void putout()const
    {
        for(rg unsigned int i=0;i<A.size();i++)print(A[i]),putchar(' ');
    }
    inline poly operator +(const poly b)const
    {
        poly RES;
        RES.resize(max(size(),b.size()));
        for(rg unsigned int i=0;i<RES.size();i++)RES[i]=Md((i<size()?A[i]:0)+(i<b.size()?b[i]:0));
        return RES;
    }
    inline poly operator -(const poly b)const
    {
        poly RES;
        RES.resize(max(size(),b.size()));
        for(rg unsigned int i=0;i<RES.size();i++)RES[i]=Md((i<size()?A[i]:0)+mod-(i<b.size()?b[i]:0));
        return RES;
    }
    inline poly operator *(const int b)const
    {
        poly RES=*this;
        for(rg unsigned int i=0;i<RES.size();i++)RES[i]=(ll)RES[i]*b%mod;
        return RES;
    }
    inline poly operator /(const int b)const
    {
        poly RES=(*this)*pow(b,mod-2);
    	return RES;
    }
    inline poly operator *(const poly b)const
    {
        const int RES=A.size()+b.size()-1;
        L=1;while(L<RES)L<<=1;
        poly c;c.A.resize(RES);
        memset(ha,0,L<<2);
        memset(hb,0,L<<2);
        for(rg unsigned int i=0;i<A.size();i++)ha[i]=A[i];
        for(rg unsigned int i=0;i<b.A.size();i++)hb[i]=b.A[i];
        DFT(ha),DFT(hb);
        for(rg int i=0;i<L;i++)ha[i]=(ll)ha[i]*hb[i]%mod;
        IDFT(ha);
        const int inv=pow(L,mod-2);
        for(rg int i=0;i<RES;i++)c.A[i]=(ll)ha[i]*inv%mod;
        return c;
    }
    inline poly inv()const
    {
        poly C;
        if(A.size()==1){C=*this;C[0]=pow(C[0],mod-2);return C;}
        C.resize((A.size()+1)>>1);
        for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i];
        C=C.inv();
        L=1;while(L<(int)size()*2-1)L<<=1;
        for(rg unsigned int i=0;i<A.size();i++)ha[i]=A[i];
        for(rg unsigned int i=0;i<C.size();i++)hb[i]=C[i];
        memset(ha+A.size(),0,(L-A.size())<<2);
        memset(hb+C.size(),0,(L-C.size())<<2);
        DFT(ha),DFT(hb);
        for(rg int i=0;i<L;i++)ha[i]=(ll)(2-(ll)hb[i]*ha[i]%mod+mod)*hb[i]%mod;
        IDFT(ha);
        const int inv=pow(L,mod-2);
        C.resize(size());
        for(rg unsigned int i=0;i<size();i++)C[i]=(ll)ha[i]*inv%mod;
        return C;
    }
/*    inline poly inv()const
    {
        poly C;
        if(A.size()==1){C=*this;C[0]=pow(C[0],mod-2);return C;}
        C.resize((A.size()+1)>>1);
        for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i];
        C=C.inv();
        poly D=(poly)2-*this*C;
        D.resize(size());
        D=D*C;
        D.resize(size());
        return D;
    }*///大常数版本 
    inline void Reverse(const int n)
    {
    	A.resize(n);
    	for(rg int i=0,j=n-1;i<j;i++,j--)swap(A[i],A[j]);
    }
    inline poly operator /(const poly B)const
    {
    	if(size()<B.size())return 0;
        poly a=*this,b=B;a.Reverse(size()),b.Reverse(B.size());
        b.resize(size()-B.size()+1);
        b=b.inv();
        b=b*a;
        b.Reverse(size()-B.size()+1);
        return b;
    }
    inline poly operator %(const poly B)const
    {
        poly C=(*this)-(*this)/B*B;C.resize(B.size()-1);
        return C;
    }
    inline poly diff()const
    {
        poly C;C.resize(size()-1);
        for(rg unsigned int i=1;i<size();i++)C[i-1]=(ll)A[i]*i%mod;
        return C;
    }
    inline poly inte()const
    {
        poly C;C.resize(size()+1);
        for(rg unsigned int i=0;i<size();i++)C[i+1]=(ll)A[i]*Inv[i+1]%mod;
        C[0]=0;
        return C;
    }
    inline poly ln()const
    {
        poly C=(diff()*inv()).inte();C.resize(size());
        return C;
    }
    inline poly exp()const
    {
        poly C;
        if(size()==1){C=*this;C[0]=1;return C;}
        C.resize((size()+1)>>1);
        for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i];
        C=C.exp();C.resize(size());
        poly D=(poly)1-C.ln()+*this;
        D=D*C;
        D.resize(size());
        return D;
    }
    inline poly sqrt()const
    {
        poly C;
        if(size()==1)
        {
            C=*this;C[0]=Quadratic_residue(C[0]);
            return C;
        }
        C.resize((size()+1)>>1);
        for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i];
        C=C.sqrt();C.resize(size());
        C=(C+*this*C.inv())*(int)499122177;
        C.resize(size());
        return C;
    }
    inline poly operator >>(const unsigned int x)const
    {
    	poly C;if(size()<x){C.resize(0);return C;}
        C.resize(size()-x);
    	for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i+x];
    	return C;
    }
    inline poly operator <<(const unsigned int x)const
    {
    	poly C;C.RE(size()+x);
    	for(rg unsigned int i=0;i<size();i++)C[i+x]=A[i];
    	return C;
    }
    inline poly Pow(const unsigned int x)const
    {
    	for(rg unsigned int i=0;i<size();i++)
            if(A[i])
            {
                poly C=((((*this/A[i])>>i).ln()*x).exp()*pow(A[i],x))<<(min(i*x,size()));
                C.resize(size());
                return C;
            }
    	return *this;
    }
    inline void cheng(const poly&B)
    {
        for(rg unsigned int i=0;i<size();i++)A[i]=(ll)A[i]*B[i]%mod; 
    }
    inline void jia(const poly&B)
    {
        for(rg unsigned int i=0;i<size();i++)A[i]=Md(A[i]+B[i]); 
    }
    inline void dft()
    {
        memset(ha,0,L<<2);
        for(rg unsigned int i=0;i<A.size();i++)ha[i]=A[i];
        DFT(ha);
        resize(L);
        for(rg int i=0;i<L;i++)A[i]=ha[i];
    }
    inline void idft()
    {
        memset(ha,0,L<<2);
        for(rg unsigned int i=0;i<A.size();i++)ha[i]=A[i];
        IDFT(ha);
        const int inv=pow(L,mod-2);
        for(rg int i=0;i<L;i++)A[i]=(ll)ha[i]*inv%mod;
        while(size()&&!A[size()-1])A.pop_back();
    }
};
void fz(const int root,const int l,const int r,std::vector<int>&v,std::vector<poly>&A)
{
    if(l==r)
    {
        A[root].resize(2);
        A[root][0]=(mod-v[l])%mod;
        A[root][1]=1;
        return;
    }
    const int mid=(l+r)>>1;
    fz(root<<1,l,mid,v,A),fz(root<<1|1,mid+1,r,v,A);
    A[root]=A[root<<1]*A[root<<1|1];
}
void calc(const int root,const int l,const int r,std::vector<int>&v,std::vector<poly>&A,std::vector<poly>&B)
{
    if(l==r)
    {
        v[l]=B[root][0];
        return;
    }
    const int mid=(l+r)>>1;
    B[root<<1]=B[root]%A[root<<1];
    B[root<<1|1]=B[root]%A[root<<1|1];
    calc(root<<1,l,mid,v,A,B),calc(root<<1|1,mid+1,r,v,A,B);
}
void multi_point_evaluation(const poly a,std::vector<int>&v)
{
    std::vector<poly>A,B;A.resize(maxn),B.resize(maxn);
    fz(1,0,v.size()-1,v,A);
    B[1]=a%A[1];
    calc(1,0,v.size()-1,v,A,B);
}
void fz2(const int root,const int l,const int r,std::vector<int>&y,std::vector<poly>&A,std::vector<poly>&B)
{
    if(l==r)
    {
        B[root].resize(1),B[root][0]=y[l];
        return;
    }
    const int mid=(l+r)>>1;
    fz2(root<<1,l,mid,y,A,B),fz2(root<<1|1,mid+1,r,y,A,B);
    B[root]=B[root<<1]*A[root<<1|1]+B[root<<1|1]*A[root<<1];
}
poly interpolation(std::vector<int>&x,std::vector<int>&y)
{
    std::vector<poly>A,B;A.resize(maxn),B.resize(maxn);
	fz(1,0,x.size()-1,x,A);
	multi_point_evaluation(A[1].diff(),x);
	for(rg unsigned int i=0;i<x.size();i++)y[i]=(ll)y[i]*pow(x[i],mod-2)%mod;
    fz2(1,0,x.size()-1,y,A,B);
    return B[1];
}
}///namespace of Poly
Poly::poly a;std::vector<int>x,y; 
int n;
int main()
{
    Poly::init(maxn);///namespace of Poly
    read(n),x.resize(n),y.resize(n);
    for(rg int i=0;i<n;i++)read(x[i]),read(y[i]);
    (Poly::interpolation(x,y)).putout();
    return flush(),0;
}

总结

这个算法虽然有点常数,但是能很好的解决一些问题

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 机械臂轨迹优化是机械臂控制中的重要问题,它的目的是使机械臂在执行任务时的运动更加平滑、高效。三次多项式插值是一种常用的轨迹规划方法,它可以通过对给定的离散数据进行插值计算出平滑的轨迹。下面介绍一下三次多项式插值的基本思想和步骤。 1. 基本思想 三次多项式插值的基本思想是,在给定的离散数据点上,构造一个三次多项式函数,使得这个函数在每个数据点处的函数值、一阶导数和二阶导数都与原数据点相同。这样构造出来的三次多项式函数就能够通过插值计算出平滑的轨迹。 2. 插值步骤 三次多项式插值插值步骤如下: (1)确定插值区间 首先需要确定插值区间,也就是在哪些时间段内进行插值。通常情况下,插值区间是由机械臂的起始位置和目标位置决定的。 (2)计算三次多项式系数 在确定了插值区间后,就可以根据给定的离散数据点计算三次多项式的系数了。假设有 $n$ 个数据点 $(t_i, q_i)$,其中 $t_i$ 是时间,$q_i$ 是机械臂的位置或姿态。则可以通过以下公式计算出三次多项式的系数: $$ a_i = q_i \\ b_i = \frac{q_{i+1} - q_i}{t_{i+1} - t_i} - \frac{h_i}{3}(2c_i + c_{i+1}) \\ d_i = \frac{c_{i+1} - c_i}{3h_i} \\ c_i = \frac{1}{h_i}(c_i - c_{i-1}) - \frac{h_i}{3}(2c_{i-1} + c_i) $$ 其中,$h_i = t_{i+1} - t_i$,$a_i$,$b_i$,$c_i$,$d_i$ 分别是三次多项式的系数。 (3)计算插值函数 有了三次多项式的系数后,就可以根据给定的时间 $t$ 计算出机械臂的位置或姿态 $q$ 了。具体计算方法如下: 首先确定时间 $t$ 属于哪个插值区间 $[t_i, t_{i+1}]$,然后计算出 $t$ 相对于 $t_i$ 的时间差 $\Delta t = t - t_i$。接着,就可以通过以下公式计算出机械臂的位置或姿态: $$ q(t) = a_i + b_i\Delta t + c_i\Delta t^2 + d_i\Delta t^3 $$ 这样就可以得到平滑的机械臂轨迹了。 3. 插值误差 三次多项式插值的精度和插值误差有关。通常情况下,插值误差是由于插值函数不能完全拟合原始数据点而产生的。为了减小插值误差,可以增加数据点的数量,或者采用更高阶的多项式进行插值。当然,过多的数据点和高阶的多项式也会导致计算量增大和过拟合等问题,需要根据实际情况进行选择。 ### 回答2: 三次多项式插值是一种常用的插值方法,能够用一条平滑的曲线连接已知的数据点。在机械臂轨迹优化中,我们可以利用三次多项式插值来优化机械臂的轨迹规划和控制。 首先,我们需要收集机械臂的起始点和目标点的位置、速度和加速度信息。然后,利用这些数据点来进行三次多项式插值。通过插值可以得到一条平滑的轨迹,使机械臂在运动时不会出现突变或过大的加速度,更加稳定和可控。 其次,在进行插值时,我们需要考虑一些优化策略。例如,可以通过参数调节来控制插值曲线的平滑程度。此外,在机械臂运动过程中,我们还可以利用插值来实现轨迹快速调整、避免障碍物等优化目标。通过优化插值曲线,可以使机械臂运动更加高效、智能和安全。 最后,需要注意的是,三次多项式插值只是机械臂轨迹优化的一种方法之一。在实际应用中,我们还需要考虑其他因素,如环境约束、物体重量等,并结合其他控制算法,如PID控制等,来实现机械臂轨迹的优化和控制。 总之,使用三次多项式插值可以优化机械臂轨迹的规划和控制,提高机械臂的稳定性、可控性和运动效率。这种方法在工业生产和自动化领域有着广泛的应用前景。 ### 回答3: 三次多项式插值是一种常用的曲线拟合方法,可以用于机械臂轨迹优化。机械臂在执行任务时,需要沿着特定轨迹运动,而三次多项式插值可以使得机械臂的运动更加平滑和连续。 首先,我们需要确定机械臂轨迹的起点和终点,以及中间的关键点。通过将这些关键点作为插值节点,可以构建三次多项式插值函数。 其次,根据插值节点的位置和要求的运动方式,我们可以确定三次多项式的系数。这些系数决定了插值函数的形状和曲线的特性。我们可以通过解线性方程组的方式求解这些系数,确保插值函数通过所有的插值节点。 最后,通过将插值函数应用于机械臂的运动控制中,可以使得机械臂按照插值函数所描述的轨迹进行运动。这样的轨迹优化可以使得机械臂的运动更加平滑和连续,减少了机械臂的震动和抖动,提高了机械臂的运动精度和稳定性。 总之,三次多项式插值方法可以用于机械臂轨迹优化,通过构建插值函数并将其应用于机械臂控制中,可以使得机械臂的运动更加平滑、连续和稳定。这对于机械臂执行各种任务具有重要的意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值