MXNet 多rec参与训练

本文详细介绍了如何使用MXNet框架进行多GPU协同训练,通过并行计算加速深度学习模型的训练过程,提高训练效率。内容涵盖了数据并行、模型并行以及混合并行策略,帮助开发者理解如何在MXNet中实现高效的分布式训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面是内容只是简写

import mxnet as mx
import numpy as np
class Mix(mx.io.DataIter):
    def __init__(self, paths, **kwargs):
        super(Mix, self).__init__()
        self.flags = range(len(paths))
        self.numbers = {}.fromkeys(self.flags, 0)
        self.generator = lambda x : mx.io.ImageRecorIter(x, **kwargs)
        self.recs = map(self.generator, paths)

    def reset(self):
        for rec in self.recs:
            rec.reset()
        self.flags = range(len(self.recs))

    def next(self):
        while(self.flags):
            idx = np.random.chioce(self.flags)
            try:
                self.batch = self.recs[idx].next()
            expect StopIteration:
                self.flags.remove(idx)
                if not self.flags:
                    raise StopIteration
                continue
            break
        .......
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值