自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 资源 (1)
  • 收藏
  • 关注

原创 darknet中添加新层

src中新建mylayer.c和mylayer.h,在makefile里OBJ添加mylayer.odarknet.h里LAYER_TYPE添加MYLAYERparser.c中 include “mylayer.h”, string_to_layer_type函数中添加 if(strcmp(type, “[mylayer]”) ==0) return MYLAYER...

2018-04-09 10:56:21 1499 2

原创 tensorflow c++资料

tensorflow-object-detection-cppDirect access to Tensor Buffers in C++ interface #8033Mat转Tensorimg = cv::imread(img_path);TensorShape shape({1, img.rows , img.cols, 3});input_tensor = Ten...

2018-03-22 19:08:36 434

原创 linux中tensorflow编译libtensorflow_cc.so

从github下载源码cd path_tensorflow/tensorflow# 依赖等见 https://tensorflow.google.cn/install/install_sources./configurebazel build --config=monlithic :libtensorflow_cc.so# 如果不加--config=monlithic,编译出来...

2018-03-22 19:04:09 4472

原创 tensorflow 目标检测API学习之protobuf

[TOC] google protobuf 谷歌开发者网站proto示例syntax = "proto2"; //使用proto2语法编写package protobuf;message Object { required int32 class = 1; required float xmin = 2; required float ymin = 3; req

2017-12-27 10:27:26 3017 1

原创 Learning Deep Features for Discriminative Localization

Class Activation MappingCAM生成实验结果分类定位细粒度识别参考文献 NIN[2]提出的全局平均池化(Global Average Pooling, GAP),代替如AlexNet和VGG中出现的含大量参数的的全连接层(FC6、FC7),能起到防止过拟合、提高泛化能力的作用。而且相对于FC层, GAP对空间平移更鲁棒, 可解释性也更强。除了上述优点, 本文提出另

2017-11-23 19:54:02 739

原创 coco评价指标

cocoapi 示例: Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 = 0.17, 0.20, 0.03 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 = 0.34, 0.37, 0.03 Aver

2017-11-10 17:46:10 6731 5

原创 MXNet SSD之multibox_target

multibox_targethmultibox_targetccmultibox_target.hnamespace mxnet {namespace op {namespace mshadow_op {struct safe_divide { template<typename DType> MSHADOW_XINLINE static DType Map(DType a, DTy

2017-11-09 19:23:56 1989 1

原创 MXNet 多rec参与训练

下面是内容只是简写import mxnet as mximport numpy as npclass Mix(mx.io.DataIter): def __init__(self, paths, **kwargs): super(Mix, self).__init__() self.flags = range(len(paths)) sel

2017-11-08 13:56:46 671 1

转载 caffe源码分析--Blob类

转自:http://blog.csdn.net/lingerlanlan/article/details/24379689数据成员 protected: shared_ptr data_; //data数据,指向SyncedMemory类的智能指针 shared_ptr diff_; //参数更新量 shared_ptr shape_data_; //数据维度

2016-08-25 15:58:43 387

转载 caffe源码分析--SyncedMemory类

转载自http://blog.csdn.net/lingerlanlan/article/details/24379607{CSDN:CODE:1845455}

2016-08-25 14:16:42 477

原创 C++ Primer Plus 之 输入、输出和文件

一 、流、缓冲区和iostream文件c++将输入和输出看作字节流。输入时,程序从输入流中抽取字节;输出时,程序将字节插入输出流。通过使用缓存区可以更高效地处理输入输出。缓冲区是用作中介的内存块,它是将信息从设备输到程序或从程序输给设备的临时存储工具。通常,像磁盘驱动器这样的设备以512字节(或更多)的块为单位来传输数据,而程序通常每次只能处理一个字节的信息。缓冲区帮助匹配这两种不同的信息传输

2016-08-21 16:09:12 721

原创 cs229学习笔记之支持向量机

函数距离和几何距离设特征和类标签分别为x,y∈{−1,1}x,y \in \{-1,1\},定义分类器hw,b(x)=g(wTx+b)h_{w,b}(x)=g(w^Tx+b),g(z)={1−1z≥0 z<0 g(z)=\begin{cases}1&\text{$z \geq 0$ }\\-1&\text{$z<0$ } \end{cases}函数距离给定训练样本(x(i),y(i))(x^{(

2016-06-19 10:43:59 2006

原创 cs231学习笔记二 线性分类器、SVM、Softmax

课程地址:http://cs231n.github.io/linear-classify/线性分类器假设样本xi∈RD,i=1…Nx_i \in R^D,i = 1 \dots N,对应类标签yi∈1…Ky_i \in { 1 \dots K }。现定义一个线性映射f(xi,W,b)=Wxi+bf(x_i, W, b) = W x_i + b,WW是K∗DK*D的矩阵,bb是KK维的向量。WW和b

2016-06-18 20:24:37 3495

原创 cs231学习笔记一 图像识别与KNN

课程地址:http://cs231n.github.io/classification/图像识别图像识别就是给你一张图,将其分类成一组给定类别中的一种。如图1所示,给定一张图片,以及可能的类别{猫、狗、帽子、杯子},要求将这张图片识别出到底属于哪一类。图 1

2016-06-17 21:14:58 6383

转载 深度学习之CNN二 RCNN系列

RCNN:http://blog.csdn.net/hjimce/article/details/50187029SSPNet:http://blog.csdn.net/hjimce/article/details/50187655Fast RCNN:http://blog.csdn.net/u010678153/article/details/46891655Faster RCNN:

2016-06-07 15:56:52 5579

原创 深度学习之CNN一 卷积与池化

1 卷积连续: 一维卷积:s(t)=(x∗w)(t)=∫x(a)w(t−a)dts(t)=(x*w)(t)=\int x(a)w(t-a)dt 二维卷积:S(t)=(K∗I)(i,j)=∫∫I(i,j)K(i−m,j−n)dmdnS(t)=(K*I)(i,j)=\int\int I(i,j)K(i-m,j-n)dmdn 离散: 一维卷积:s(t)=(x∗w)(t)=

2016-06-05 10:34:22 17280

转载 理解LSTM

原文 http://www.jianshu.com/p/9dc9f41f0b29本文译自 Colah 的博文Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考。我们的思想拥有持久性。传统的神经网络并不

2016-04-11 08:00:04 856

机器学习:实用案例解析(R语言)

机器学习中的一些实用案例解析用R语言实现

2015-06-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除