题目描述:
一座大楼有层,地面算作第0层,最高的一层为第 层。已知棋子从第0层掉落肯定不会摔碎,从第层掉落可能会摔碎,也可能不会摔碎。给定整数作为楼层数,再给定整数作为棋子数,返回如果想找到棋子不会摔碎的最高层数,即使在最差的情况下扔的最小次数。一次只能扔一个棋子。
示例1
输入
10,1
返回值
10
说明
因为只有1棵棋子,所以不得不从第1层开始一直试到第10层,在最差的情况下,即第10层是不会摔坏的最高层,最少也要扔10次
示例2
输入
3,2
返回值
2
说明
先在2层扔1棵棋子,如果碎了,试第1层,如果没碎,试第3层
示例3
输入
105,2
返回值
14
说明
第一个棋子先在14层扔,碎了则用仅存的一个棋子试1~13层
若没碎,第一个棋子继续在27层扔,碎了则用仅存的一个棋子试15~26层
若没碎,第一个棋子继续在39层扔,碎了则用仅存的一个棋子试28~38层
若没碎,第一个棋子继续在50层扔,碎了则用仅存的一个棋子试40~49层
若没碎,第一个棋子继续在60层扔,碎了则用仅存的一个棋子试51~59层
若没碎,第一个棋子继续在69层扔,碎了则用仅存的一个棋子试61~68层
若没碎,第一个棋子继续在77层扔,碎了则用仅存的一个棋子试70~76层
若没碎,第一个棋子继续在84层扔,碎了则用仅存的一个棋子试78~83层
若没碎,第一个棋子继续在90层扔,碎了则用仅存的一个棋子试85~89层
若没碎,第一个棋子继续在95层扔,碎了则用仅存的一个棋子试91~94层
若没碎,第一个棋子继续在99层扔,碎了则用仅存的一个棋子试96~98层
若没碎,第一个棋子继续在102层扔,碎了则用仅存的一个棋子试100、101层
若没碎,第一个棋子继续在104层扔,碎了则用仅存的一个棋子试103层
若没碎,第一个棋子继续在105层扔,若到这一步还没碎,那么105便是结果
class Solution {
public:
int solve(int n, int k) {
if(n < 1)
return 0;
if(k == 1)
return n;
int logtimes = log2(n) + 1;
if( k >= logtimes)
return logtimes;
vectorf(k+1,0);
int cnt=0;
while(f[k] < n)
{
++cnt;
for(int i = k;i > 0;–i)
f[i] += f[i-1] + 1;
}
return cnt;
}
};