题目描述:
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/
9 20
/
15 7
返回它的最大深度 3 。
解题思路:
(1)深度优先搜索:
斜体样式
如果我们知道了左子树和右子树的最大深度 l和 r,那么该二叉树的最大深度即max(l,r)+1,
而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1)O(1) 时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。
代码实现:
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root==NULL)
{
return 0;
}
return max(maxDepth(root->left),maxDepth(root->right))+1;
}
};
(2)广度优先搜索:
解题思路:
我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。
每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量 ans 来维护拓展的次数,该二叉树的最大深度即为 ans。
代码实现:
class Solution {
public:
int maxDepth(TreeNode* root) {
queue<TreeNode*> Q;
int ans=0;
if(root==NULL)
return 0;
Q.push(root);
while(!Q.empty())
{
int sz=Q.size();
while(sz>0)
{
TreeNode* node=Q.front();
Q.pop();
if(node->left) Q.push(node->left);
if(node->right) Q.push(node->right);
sz-=1;
}
ans+=1;
}
return ans;
}
};