AtCoder abc274. E - Booster题解

题目描述

n n n 个城市, m m m 个箱子,每个箱子里面都有一个加速器,经过每个加速器可以将速度变为原来的 2 2 2 倍,现在需要从原点出发中间必须经过 n n n 个城市和任意个箱子,求最终回到原点的最短时间

输入样例
2 1
1 1
0 1
1 0
输出样例
2.5000000000

算法

(状态压缩dp) O ( 2 n + m ∗ ( n + m ) 2 ) O(2^{n+m} * (n+m)^2) O(2n+m(n+m)2)
状态表示

d p [ i ] [ s ] dp[i][s] dp[i][s] 走的路线为 s s s,并且现在在点 i i i 的时间的最小值
其中 s s s 表示的路径 一共有 m + n m+n m+n 位,从右往左 [ 0 , n − 1 ] [0,n-1] [0,n1] 位表示城市, [ n , n − m + 1 ] [n,n-m+1] [n,nm+1] 位表示加速器
初始化

for(int i=0;i<n+m;i++)
{
	for(int s=0;s<(1<<(n+m));s++)
	{
		dp[i][s]=DBL_MAX;
	}
}
//初始化 从原点到每个点的距离
for(int i=0;i<n+m;i++)
{
	dp[i][(1<<i)]=dis(x[i],y[i]);
}
for(int i=0;i<n+m;i++)dp[i][1<<i]=dis(x[i],y[i]);
状态转移

假设现在从第 i i i 个城市/加速器 走到第 j j j 个城市/加速器所需要的时间为
1.计算 i i i , j j j 之间的距离 d i s dis dis
2.计算这条路线上的速度 v v v
v v v = = = 2 加速器数量 2^{加速器数量} 2加速器数量
那么加速器的数量 = = = s > > n s>>n s>>n 1 1 1 的个数(预处理出来)
所以经过这一段所需要的时间 t = d i s / v t = dis/v t=dis/v

预处理

for(int s=0;s<M;s++)
{
	for(int j=0;j<N;j++)
	{
		if((s>>j)&1) two[s]++;
	}
}

状态转移

for(int s=1;s<(1<<(n+m));s++)//枚举已经走过的点
{
	int cnt=two[(s>>n)];//看经过了多少个加速器
	double v=(1<<cnt);//速度
	//这次走从i到j
	for(int i=0;i<n+m;i++)
	{
		if((s>>i)&1)//上一次走到了i
		{
			for(int j=0;j<n+m;j++)
			{
				if(((s>>j)&1)==0)//上一次没有走到j
				{
					dp[j][s^(1<<j)]=min(dp[j][s^(1<<j)],dp[i][s]+dis(x[i]-x[j],y[i]-y[j])/v);
				}
			}
		}
	}
}
最终结果

由于最终还需要走回到原点,所以要对于所有已经走过 n n n 个城市的路径 s s s 再次计算到原点所需要花销的时间,具体细节跟上面计算方法一样

C++ 代码
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<unordered_map>
#include<unordered_set>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<vector>
#include<deque>
#include<cmath>
#include<ctime>
#include<cfloat>

using namespace std;

double res=DBL_MAX;

const int N=20,M=(1<<20);
typedef pair<int,int> pii;
#define x first
#define y second

int x[N],y[N];
double dp[N][M];
int two[M];
int n,m;

double dis(double x,double y)
{
	double t=x*x+y*y;
	return sqrt(t);
}

int main()
{
	cin>>n>>m;
	for(int i=0;i<n+m;i++) scanf("%d %d",&x[i],&y[i]);
	for(int i=0;i<n+m;i++)
	{
		for(int s=0;s<(1<<(n+m));s++)
		{
			dp[i][s]=DBL_MAX;
		}
	}
	for(int s=0;s<M;s++)
	{
		for(int j=0;j<N;j++)
		{
			if((s>>j)&1) two[s]++;
		}
	}
	//初始化 从原点到每个点的距离
	for(int i=0;i<n+m;i++)
	{
		dp[i][(1<<i)]=dis(x[i],y[i]);
	}
	for(int i=0;i<n+m;i++)dp[i][1<<i]=dis(x[i],y[i]);
	
	
	for(int s=1;s<(1<<(n+m));s++)//枚举已经走过的点
	{
		int cnt=two[(s>>n)];//看经过了多少个加速器
		double v=(1<<cnt);//速度
		//这次走从i到j
		for(int i=0;i<n+m;i++)
		{
			if((s>>i)&1)//上一次走到了i
			{
				for(int j=0;j<n+m;j++)
				{
					if(((s>>j)&1)==0)//上一次没有走到j
					{
						dp[j][s^(1<<j)]=min(dp[j][s^(1<<j)],
							dp[i][s]+dis(x[i]-x[j],y[i]-y[j])/v);
					}
				}
			}
		}
	}
	double res=DBL_MAX;
	for(int i=0;i<n+m;i++)
	{
		for(int s=(1<<n)-1;s<((1<<(n+m)));s++)
		{
			bool f=0;
			//检查是不是后n位都为1
			for(int k=0;k<n;k++)
			{
				if(((s>>k)&1)==0)
				{
					f=1;
					break;
				}
			}
			if(f) continue;
			int cnt=two[(s>>n)];//看经过了多少个加速器
			double v=(1<<cnt);//速度的倒数
			res=min(res,dp[i][s]+dis(x[i],y[i])/v);
		}
	}
	printf("%.10lf",res);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值