AtCoder abc270. F - Transportation题解

题目描述

N N N 个小岛,初始时每个小岛上没有飞机场,海湾与连接道路,现在可以
1. 花费 X i X_i Xi 在小岛 i i i 上建造一个飞机场
2. 花费 Y i Y_i Yi 在小岛 i i i 上建造一个海湾
3. 花费 Z i Z_i Zi 连接 小岛 A i A_i Ai B i B_i Bi
如果小岛 U U U , V V V 上都有飞机场,或者都有海湾,或者被连接,则为可达
现在需要所有岛都互相可达,求最小的花费

输入样例
4 2
1 20 4 7
20 2 20 3
1 3 5
1 4 6
输出样例
16

算法

(最小生成树) O ( n + m ) O(n + m) O(n+m)

1. 首先分析,需要图中所有点两两可达,那么就是最小生成树问题
2. 如何处理点权?
在这里可以设置两个虚拟源点
一个是 n + 1 n+1 n+1 与其余 n n n 个点连接一条边,边权为 X i X_i Xi
一个是 n + 2 n+2 n+2 与其余 n n n 个点连接一条边,边权为 Y i Y_i Yi
那么接下来我们就有四种情况
(1). 没有机场也没有海湾,那么最小生成树点的总数 N = n N = n N=n
(2). 只有机场,没有海湾,那么最小生成树点的总数 N = n + 1 N = n + 1 N=n+1 并且需要加入边 X i X_i Xi
(3). 只有海湾,没有机场,那么最小生成树点的总数 N = n + 1 N = n + 1 N=n+1 并且需要加入边 Y i Y_i Yi
(4). 既有机场,也有海湾,那么最小生成树点的总数 N = n + 2 N = n + 2 N=n+2 并且需要加入边 X i X_i Xi , Y i Y_i Yi
在这里需要注意的是每次加入边了之后记得 i n i t init init
最后还需要特判无解的情况,在这里我用的就是并查集维护size去判断是否无解

C++ 代码
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<unordered_map>
#include<unordered_set>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<vector>
#include<deque>
#include<cmath>
#include<ctime>

using namespace std;

const int N=1e6+10;

typedef long long ll;
struct node
{
	int a,b;
	ll c;
	bool operator<(const node &w) const
	{
		return c<w.c;		
	}
}e[N];
int f[N],w1[N],w2[N],A[N],B[N],siz[N];
ll C[N];
int n,m;

int find(int x)
{
	if(x!=f[x])
		f[x]=find(f[x]);
	return f[x];
}

void init()
{
	for(int i=0;i<N;i++)
	{
		e[i]={0,0,(ll)9e18};
	}
	for(int i=0;i<N;i++) 
	{
		f[i]=i;
		siz[i]=1;
	}
	for(int i=1;i<=m;i++)
	{
		e[i]={A[i],B[i],C[i]};
	}
}

ll ku(int n,int m,int c)
{
	init();
	
	if(c==1)
	{
		for(int i=1;i<=n;i++)
			e[++m]={n+1,i,1ll*w1[i]};
		n++;
	}
	else if(c==2)
	{
		for(int i=1;i<=n;i++)
			e[++m]={n+1,i,1ll*w2[i]};
		n++;
	}
	else if(c==3)
	{
		for(int i=1;i<=n;i++)
			e[++m]={n+1,i,1ll*w1[i]};
		for(int i=1;i<=n;i++)
			e[++m]={n+2,i,1ll*w2[i]};
		n+=2;
	}
	sort(e+1,e+m+1);
	ll res=0;
	for(int i=1;i<=m;i++)
	{
		int a=e[i].a,b=e[i].b;
		ll c=e[i].c;
		a=find(a);
		b=find(b);
		if(a!=b)
		{
			f[a]=b;
			siz[b]+=siz[a];
			res+=c;
		}
	}
	for(int i=1;i<=n;i++)
	{
		int x=find(i);
		if(siz[x]!=n) return 9e18;
	}
	return res;
}

int main()
{
	
	cin>>n>>m;
	for(int i=1;i<=n;i++) scanf("%d",&w1[i]);
	for(int i=1;i<=n;i++) scanf("%d",&w2[i]);
	
	for(int i=1;i<=m;i++)
	{
		scanf("%d %d %lld",&A[i],&B[i],&C[i]);
	}
	ll res=9e18;
	//不建立机场和海湾
	res=min(res,ku(n,m,0));
	//只建立机场
	res=min(res,ku(n,m,1));
	//只建立海湾
	res=min(res,ku(n,m,2));
	//建立机场+海湾
	res=min(res,ku(n,m,3));
	cout<<res<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值