【python】33_生成器案例之生产者消费者模型

【摘要】通过前两篇博文的介绍,相信读者一定对生成器有了基本的掌握。在这篇博文中我将介绍生产者消费者模型是什么,并用生成器实现这个模型,相当于补充强化,也算是回顾一下《操作系统》中生产者消费者模型的内容。

1. 生产者消费者模型的简介

生产者消费者模型当中有两大类重要的角色,一个是生产者(负责造数据的任务),另一个是消费者(接收造出来的数据进行进一步的操作)。
在这里插入图片描述

1. 为什么要使用生产者消费者模型?
在并发编程中,如果生产者处理速度很快,而消费者处理速度比较慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个等待的问题,就引入了生产者与消费者模型。让它们之间可以不停的生产和消费。

2. 实现生产者消费者模型三要素:

  1. 生产者

  2. 消费者

  3. 队列(或其他的容器,但队列不用考虑锁的问题)

3. 什么时候用这个模型?

程序中出现明显的两类任务,一类任务是负责生产,另外一类任务是负责处理生产的数据的(如爬虫)

4. 用该模型的好处?

  1. 实现了生产者与消费者的解耦和

  2. 平衡了生产力与消费力,就是生产者一直不停的生产,消费者可以不停的消费,因为二者不再是直接沟通的,而是跟队列沟通的。

2.用生成器实现生产者消费者模型

这里我们拟实现一个苹果公司生产手机以及消费者购买手机的过程,这个模型的三要素是生产者、消费者以及缓冲区(我们选用队列,因为队列的工作方式是先进先出)
队列的实现选用从后面进,前面出。即
先进: list.append(element)
先出: element = list.pop(0)
当然也可以选用从前面仅,后面出,都可以。
先进:list.insert(0,element)
先出:element = list.pop( )

判断缓冲区是否已满:

import  time
import  random

cacheList = []
# # 设置缓冲区的最大长度, 当缓冲区到达最大长度, 那么生产者就不能再生产了
cacheListLen = 2

def is_full():
    """
    判断缓冲区队列是否已经满了
    :return:
    """
    return  len(cacheList) == cacheListLen

生产者:

def Producer(name):
    """
    生产者, 主要用于生产数据
    :return:
    """
    while True:
        if not is_full():
            print("生产者[%s]正在生产苹果手机....." %(name))
            # 模拟生产者生产数据需要的时间, 随机休眠0~1秒,
            time.sleep(random.random())
            print("[%s] 已经生产苹果手机完成" %(name))
            # 将生产的游戏机放入缓冲区
            cacheList.append('苹果手机')
        else:
            print("缓存已满!请停止生产")
            yield

消费者:

def Consumer(name):
    """
    消费者, 用于处理/消费数据
    :return:
    """
    print("【%s】正在准备购买苹果手机" %(name))
    while True:
        item = yield
        print("【%s】购买%s成功" %(name,item))

调用代码:

# producer是一个生成器
producer = Producer("苹果公司")
next(producer)

# 列表生成式, 生成消费者
consumers = [Consumer("消费者%s" %(i+1)) for i in range(3)]

# 依次遍历所有的消费者, 给提供手机
for consumer in consumers:
    if not cacheList:
        print("目前商店没有手机库存.....")
    else:
        #如果缓冲区不满,先生产,再提供消费
        if not is_full():
            next(producer)
            item = cacheList.pop(0)
            next(consumer)
            consumer.send(item)
        else:
            item = cacheList.pop(0)
            next(consumer)
            consumer.send(item)

执行结果如下:
在这里插入图片描述
理解代码执行流程:

  • producer = Producer(“苹果公司”)
    调用生产者Producer这个函数,得到一个producer生成器

  • next(producer)
    通过next调用这个生成器,直到yeild关键字出现,停止执行代码
    进入到producer这个生成器代码中,首先执行if not is_full( ),判断缓冲区是否已满,如果没有满就一直生产;满了之后,打印“缓存已满!请停止生产”,并停止到yield关键字处。

  • consumers = [Consumer(“消费者%s” %(i+1)) for i in range(3)]
    这是一个列表生成式,调用三次消费者Consumer这个函数,得到三个生成器以列表的形式存储在consumers列表中。这里也可以使用(),生成一个consumers生成器,里面存放三个生成器。两种方法都是可以的

  • for consumer in consumers
    使用for循环遍历这个列表,依次拿到这三个消费者生成器。
    每拿到一个,先判断缓冲器是否还有库存,如果没有库存,打印“目前商店没有手机库存…”;
    如果有库存,先判断缓冲区是否已满,如果不满,先next(producer),执行生产者这个生成器,缓冲区满后遇到yield停止返回调用代码,再执行item = cacheList.pop(0),拿出缓冲区(队列中)的第一个元素,再next(consumer)调用消费者的生成器,打印“消费者正在准备购买苹果手机”,进入死循环,遇到yield停止执行,返回调用代码。再执行consumer.send(item),将缓冲区拿到的第一个元素通过send方法,传递给consumer这个生成器的上一个yield关键字之前的变量item,执行print("【%s】购买%s成功" %(name,item))

这个代码还存在很多不足之处,但是重点是理解生产者消费者模型,以及理解这个代码的流程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值