VSLAM基础(十一)————李群与李代数

本文介绍了SLAM中涉及的高级数学概念——李群与李代数。李群是描述刚体连续运动的数学结构,如SO(3)和SE(3)。由于群乘法的限制,直接求导和极限操作变得复杂,因此引入李代数,它是李群的正切空间,用于描述局部导数。李代数通过与向量的加法关系简化了对李群的导数计算,使得在SLAM问题中能够更方便地处理旋转矩阵的微小变化。
摘要由CSDN通过智能技术生成

slam里一般涉及到的数学知识也就大学本科学过的那些,除了这次我们要接触的李群与李代数,不过在slam里也只是用到了这个数学工具一部分内容,理清思路后也是很清楚。

李群是具有连续(光滑)性质的群;它既是群也是流形;直观上看,一个刚体能够连续的在空间中运动,故SO(3)和SE(3)都是李群。(注:SO(3)是特殊正交群 SE(3)是特殊欧式群,由于旋转矩阵R是3乘3的维度,但自由度的约束只有3个自由度,所以旋转矩阵R在9维空间中是一个连续的3维曲面或流形)但是,SO(3)和SE(3)只有定义良好的乘法,没有加法,所以难以进行取极限和求导等操作。

还记得我们怎么求BA的嘛——通过迭代每次给T增加一个小的增量来收敛到目标函数最小,这里需要对T求导,这就遇到困难了,我们需要更好的数学工具帮助我们解决这个问题,于是引入了李代数。

李代数对应李群的正切空间,它描述了李群局部的导数。 李代数相当于李群的导数,即角速度(速度)与角度(位置)的关系,代表了一旋转向量与矩阵的对应关系。对于某个时刻的R(t)(李群空间),存在一个三维向量φ=(φ1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值