slam里一般涉及到的数学知识也就大学本科学过的那些,除了这次我们要接触的李群与李代数,不过在slam里也只是用到了这个数学工具一部分内容,理清思路后也是很清楚。
李群是具有连续(光滑)性质的群;它既是群也是流形;直观上看,一个刚体能够连续的在空间中运动,故SO(3)和SE(3)都是李群。(注:SO(3)是特殊正交群 SE(3)是特殊欧式群,由于旋转矩阵R是3乘3的维度,但自由度的约束只有3个自由度,所以旋转矩阵R在9维空间中是一个连续的3维曲面或流形)但是,SO(3)和SE(3)只有定义良好的乘法,没有加法,所以难以进行取极限和求导等操作。
还记得我们怎么求BA的嘛——通过迭代每次给T增加一个小的增量来收敛到目标函数最小,这里需要对T求导,这就遇到困难了,我们需要更好的数学工具帮助我们解决这个问题,于是引入了李代数。
李代数对应李群的正切空间,它描述了李群局部的导数。 李代数相当于李群的导数,即角速度(速度)与角度(位置)的关系,代表了一旋转向量与矩阵的对应关系。对于某个时刻的R(t)(李群空间),存在一个三维向量φ=(φ1