NLopt优化库在c++下的使用

这篇博客主要介绍如何在C++中使用NLopt优化库。内容包括NLopt的数学模型,目标函数求解,约束函数设定,以及在Windows环境下Visual Studio中的应用。示例代码展示了创建opt对象,设置算法,定义目标函数和约束条件的过程。
摘要由CSDN通过智能技术生成

  NLopt在windows下的安装以及vs下的include可以参考其他博客,本文主要记录nlopt示例程序的c++使用。

数学模型如下:


目标函数求最大值,约束函数为后两行;

#include"nlopt.hpp"
using namespace nlopt;

使用c++接口首先包含.hpp文件,相应的接口名均在nlopt命名空间里。

/**************************************************************************************************/

opt opter(algorithm, unsigned n);
opt opter(LD_SLSQP, 2);       //定义一个优化器,使用SLSQP算法,两个优化维度

首先创建一个opt对象,algorithm为NLopt算法支持参数,n为所求问题维度。

目标函数

void nlopt::opt::set_max_objective(nlopt::vfunc f, void* f_data);
opter.set_max_
NLOPT是一个用于非线性优化的开源。它支持多种优化算法和约束条件,并可以在C语言中进行使用。下面是一个简单的示例代码,演示了如何在C中使用NLOPT进行优化: ```c #include <stdio.h> #include <math.h> #include <nlopt.h> // 目标函数 double myfunc(unsigned n, const double *x, double *grad, void *my_func_data) { if (grad) { // 计算梯度,如果需要的话 grad[0] = 0.0; grad[1] = 0.5 / sqrt(x[1]); } return sqrt(x[1]); } int main() { double lb[2] = {0.0, 0.01}; // 变量下界 double ub[2] = {1.0, 1.0}; // 变量上界 double x[2] = {0.5, 0.5}; // 初始变量值 nlopt_opt opt; opt = nlopt_create(NLOPT_LD_MMA, 2); // 选择优化算法和变量数量 nlopt_set_lower_bounds(opt, lb); // 设置变量下界 nlopt_set_upper_bounds(opt, ub); // 设置变量上界 nlopt_set_min_objective(opt, myfunc, NULL); // 设置目标函数 double minf; // 最小目标函数值 if (nlopt_optimize(opt, x, &minf) < 0) { printf("Optimization failed!\n"); } else { printf("Found minimum at f(%g,%g) = %0.10g\n", x[0], x[1], minf); } nlopt_destroy(opt); // 销毁优化对象 return 0; } ``` 在上面的示例中,使用NLOPT的LD_MMA算法进行优化。你可以根据你的具体需求选择其他的优化算法。首先,需要定义一个目标函数`myfunc`,然后创建一个优化对象`opt`,并设置变量的上下界、目标函数等。最后,通过调用`nlopt_optimize`函数进行优化,得到最小目标函数值。 请注意,这只是NLOPT的简单示例,你可以根据你的具体问题进行相应的修改和扩展。你可以在NLOPT的官方文档中找到更多关于其用法和参数设置的信息。希望这对你有所帮助!如果你有任何其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值