信号处理-Chirp-Z变换

本文介绍了Chirp-Z变换(CZT),它是离散傅里叶变换(DFT)的推广,允许在Z平面上任意螺线进行采样。通过CZT,可以对频率进行更密集的采样,以逼近连续频谱。文章通过11点常数序列的DFT和CZT对比,阐述了CZT的周期延拓概念,并指出CZT在全单位圆采样时性能不及FFT,但在特定采样区间可能更有优势。CZT与补零后的FFT虽然结果相同,但CZT计算效率较低。
摘要由CSDN通过智能技术生成

摘要:本篇文章是借鉴学习其它博主CZT算法的总结,相关来源已经附在文末的参考资料一栏中。

概述:

Chirp Z变换也叫CZT变换或线性调频变换。Chirp-Z变换(CZT)是离散傅里叶变换(DFT)的一般化。具体来说,设信号长度为N,DFT相当于在Z平面单位圆上N等分的采样,而CZT可以沿着任意满足

的螺线进行采样,而M不必等于N。取 

则为对单位圆进行M等分的采样。在下文中,我们仅讨论使用CZT在单位圆上采样的情况,因为这样有着更清晰的频率意义。

从频率采样理解CZT

CZT可以用来对频率进行更密集的采样,这让离散频谱逼近连续频谱。如下图所示,我们对11点常数序列进行DFT变换,其只有直流分量,其余频率分量均为0。这似乎符合我们的直观认识,因为常数序列看起来就是没有波动的。但对其做110点CZT变换,我们会发现其频谱是具有旁峰的,DFT的结果对应的正好是连续频谱的零点。这样的结果要如何理解呢?

从周期延拓理解CZT

我们通过回答另一个问题来解释上述结果:如何用DFT来得到11点序列的110点频率序列?想要DFT得到110点序列,其输入必须是110点。做法是通过补零将11点序列转为110点序列。我们惊讶地发现,补零得到的110点序列的DFT结果,与110点CZT得到的结果是完全一致的。补零补在哪对频谱的幅值是没有影响的,会有一个相位的影响。

理解这个结果要从DFT的原理入手。DFT相当于将有限的主值序列进行周期延拓,对得到的无限的周期序列进行DTFT后,截取频域的主值序列。以我们的问题为例,对11点常数序列进行周期延拓,其得到的是无限常数序列。而对补零后的110点序列进行周期延拓,其得到的是11个1和99个0交替出现的无限序列。对应的序列不同,所得到的结果当然也不同。

所以更密集的频域采样,等价于更多的补零。对于连续频谱,其相当于无限长的补零,实际上已经不是周期序列,而是直接进行DTFT了。这也就能说明为什么得到的频谱不是纯直流的,因为实际上连续频谱对应的并不是常数序列,而是有突变的。

CZT与FFT性能对比

CZT与补零后的FFT既然结果上是一样的,那么性能上孰优孰劣呢?我们固定信号为11点常数序列,对于CZT,我们直接计算其 

 点变换;对于FFT,我们将序列补至 

 长后进行FFT。虽然CZT看起来不需要补零省了些计算量,但实际上CZT还是远比FFT慢。空间占用上我们也进行了实验,CZT和FFT几乎没有区别。所以结论是,对于全单位圆上的采样,FFT远胜CZT。如果需要仅针对部分区间采样,或许才是CZT的应用场景。

CZT原理

CZT的算法步骤

CZT的特点(与FFT比较)

参考

 <深入Chirp-Z变换 - 知乎>

数字信号处理——Chirp Z变换_队长-Leader的博客-CSDN博客_chrip z变换

频谱细化-----CZT算法介绍及MATLAB实现_YHCANDOU的博客-CSDN博客_czt算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值