本题要求你写个程序把给定的符号打印成沙漏的形状。例如给定17个“*”,要求按下列格式打印
*****
***
*
***
*****
所谓“沙漏形状”,是指每行输出奇数个符号;各行符号中心对齐;相邻两行符号数差2;符号数先从大到小顺序递减到1,再从小到大顺序递增;首尾符号数相等。
给定任意N个符号,不一定能正好组成一个沙漏。要求打印出的沙漏能用掉尽可能多的符号。
输入格式:
输入在一行给出1个正整数N(≤1000)和一个符号,中间以空格分隔。
输出格式:
首先打印出由给定符号组成的最大的沙漏形状,最后在一行中输出剩下没用掉的符号数。
输入样例:
19 *
输出样例:
*****
***
*
***
*****
2
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
下面我们来看看代码展示
//根据题目意思,沙漏是对称的,且上下两部分分别打印1,3,5,7,9,,,,等奇数个字符,该数列的前n项和=n^2;
//我们先看沙漏的一部分,n^2个,那么另一部分就是n^2-1个,加起来就是这个沙漏的所用的字符个数
//所以第一步我们要先求n,也就是这个沙漏的一部分有几行,那这个沙漏的另一部分就有n-1行
//关键点:这个沙漏的总行数(2*n-1)其实就是这个沙漏一行的最大字符数
#include <iostream>
#include <cmath>
using namespace std;
int main() {
int x, n;
char c;
cin >> x >> c;
n = floor(sqrt((x + 1) / 2));//求一部分沙漏等差数列的项数
//把沙漏分成两部分,上部分为n-1行
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < i; j++) { cout << " "; }
for (int j = 0; j < (2 * n - 1 - 2 * i); j++) { cout << c; } //从多好少,依次递减2个字符
cout << endl;
}
//下部分为n行
for (int i = 0; i < n; i++) {
for (int j = 0; j < n - i - 1; j++) { cout << " "; }
for (int j = 0; j < 2 * i + 1; j++) { cout << c; }//从少到多,依次递增两个字符
cout << endl;
}
cout << x - 2 * n * n + 1 << endl; //因为我们是用了floor向下取整,所以会有多余的,所以用x-(2n^2-1)算出剩余的字符数
return 0;
}