判别式 AI 与生成式 AI

本文摘选来自: AI 智能体开发指南

一、背景

为了解决不同的应用场景,在AI的发展过程中,机器学习模型逐步分化为 判别式(Discriminative)和生成式(Generative) 两各技术路线,从而形成了AI的两大派别。它们分别在分类、回归、模式识别以及数据生成等任务中发挥核心作用。

为了避免在AI技术选型过程中走弯路,为应用场景匹配不合适的AI,我们有必要了解两种AI的核心差异。

二、判别式AI:模式识别与分类任务的核心

判别式AI模型主要用于分类和预测任务,目标是建模输入(X)与输出(Y)之间的决策边界,即直接学习P(Y|X)。典型的判别式算法包括 逻辑回归(Logistic Regression)、支持向量机(SVM)、随机森林(Random Forest)、深度神经网络(DNN) 等。这类模型在计算机视觉、语音识别、自然语言处理等领域发挥了巨大作用。例如,2012年AlexNet在ImageNet挑战赛上大获成功,证明了深度卷积神经网络(CNN)在图像分类任务上的卓越能力。后续的ResNet、EfficientNet等模型进一步推动了判别式AI的发展,使其在目标检测、语音转文字、情感分析等任务上达到了接近人类水平的表现。

在自然语言处理领域,BERT等自监督学习的预训练模型也属于判别式AI的范畴。BERT的训练目标是通过 掩码语言模型(Masked Language Model, MLM) 预测缺失单词,其双向上下文理解能力极大提升了AI的文本理解能力,使其广泛应用于信息检索、情感分析、机器翻译等任务。

值得一提的是,判别式AI对硬件处理能力的要求更低,甚至可以在移动终端上运行,如图1。

基于AI技术的翻译机
在这里插入图片描述
(基于AI技术的翻译机)

三、生成式AI:从数据学习到创造新内容

与判别式模型不同,生成式AI的目标是学习数据的分布,并生成与训练数据相似的新样本,即建模P(X) 或 P(X|Z)(Z为隐变量,即没有预先定义的变量,隐变量的存在是判别式AI准确率缺陷的主要成因)。生成式模型不仅可以用于数据增强,还能在无标签数据环境下进行自监督学习,为AI带来了更广泛的应用场景。

生成式AI的早期探索始于隐马尔可夫模型(HMM)和玻尔兹曼机(Boltzmann Machines),但真正的突破出现在2014年,生成对抗网络(GANs) 的提出引发了AI在图像生成领域的革命。GAN由生成器(Generator) 和 判别器(Discriminator) 组成,通过博弈的方式不断优化,使生成的数据越来越接近真实样本。2017年,前文介绍的BERT/Transformer提出后,生成式AI进入快速发展阶段,OpenAI基于此架构推出的GPT系列(Generative Pre-trained Transformer)成为生成式AI的标志性成果。GPT-3、GPT-4等大规模语言模型能够基于大量文本数据进行预训练,并在下游任务中表现出极强的语言理解与生成能力。生成式AI不仅限于文本生成,还广泛应用于多模态领域,如文本生成图像(如图2)、音频合成、视频生成等。多模态生成式AI的进步,使得AI能够更自然地理解和创造内容,推动了艺术创作、设计自动化、游戏开发等多个行业的变革。
在这里插入图片描述
(图2:使用通义万象生成图片)

四、判别式 vs 生成式:优势、局限性与融合趋势

尽管判别式AI和生成式AI在建模方式和应用场景上有所不同,但二者在实践中往往相辅相成。判别式AI擅长分类、检测和回归任务,计算效率高、泛化能力强,在生产环境中更易部署。但其主要局限在于数据依赖性强、无法生成新数据,因此在低数据场景或创新内容生成方面能力有限。

相比之下,生成式AI的优势在于能够建模数据的分布并生成新样本,在低数据场景下仍能有效工作,适用于数据增强、仿真模拟、个性化内容创作等任务。然而,生成式AI往往计算成本较高,训练过程不稳定,并存在模式崩溃(Mode Collapse)、难以控制生成内容等问题。此外,由于生成式AI的内容高度依赖训练数据,其在真实性、可控性和伦理问题上也面临较大挑战。详细对比如图3所示。
在这里插入图片描述
(图3:判别式AI与生成AI对比)

随着AI技术的发展,判别式和生成式的融合趋势越来越明显。例如,GAN本身就结合了判别模型和生成模型的优势,而近年来的自监督学习(Self-Supervised Learning, SSL) 也开始采用生成式预训练+判别式微调的策略。GPT-4等大模型在预训练阶段采用自回归生成方式,但在推理过程中可以进行判别式优化,以提高模型的可靠性和稳定性。这种趋势表明,未来的AI系统可能不再严格区分判别式和生成式,而是结合二者的优点,实现更强的泛化能力和创造力。

五、典型应用场景示例

活字格低代码开发平台可引入判别式AI和生成式AI,加速新技术落地。

5.1 判别式AI:增强型OCR(快递面单识别)

需求概述:通过快递面单来自动解析出收发件人信息

核心能力:AI增强型OCR(插件:百度AI

下载地址:https://marketplace.grapecity.com.cn/ApplicationDetails?productID=SP2309140002

5.2 生成式AI:文本生成workflow(文章撰写)

需求概述:基于用户提供的关键字自动编写对SEO友好的市场宣传用文章

核心能力:AI助手命令(内置插件)

工程地址:https://gitee.com/low-code-dev-lab/hzg-demo-web-api-ai-integration

本文摘选来自: AI 智能体开发指南

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值