目录
一、在 GPUGEEK 平台大模型训练推理
1. 注册
(1)以下进入可领取算力券:
(2)注册成功后,进入个人中心页面,在这里可以完善个人信息。
2. 算力选择
(1)点击 算力市场,进入算力资源选择页面,可以看到平台提供的多种算力选项,包括不同型号的 GPU 设备 以及对应的详细信息。
(2)下面以选择RTX-A5000-24G为例,一个在这里算比较低配的配置,看看运行大模型的效果,性价比高,且性能不错,适合新手体验和模型部署。对于需要进行大规模模型训练或对性能有较高要求的用户,则可以选择多卡配置的算力资源,如 8 卡的 RTX 4090 或 H100 等。
显存 | 24 GB |
CPU | 16核 |
内存 | 96GB |
(3)在选择算力资源时,用户还需要考虑时长与¥。一定记得不用的时候要关机,要不然也是会收费!可以使用体验券。
(4)点击 容器实例->创建实例
(5)点击创建实例后,便进入如下图
(6)根据需求完成算力匹配,前面说了选择RTX-A5000-24G为例,如下图
(7)接下来咱们配置系统默认的AI大模型镜像,我这里选择的是DeepSeekR1的大模型。系统也支持自己搭建大模型镜像,或自己根据需求配置环境,如果想根据自己需求配置环境,可以参考我的另一篇博客:AutoDL算力云使用流程(保姆级教程)_autodl无卡模式开机-CSDN博客
https://blog.csdn.net/qq_54556560/article/details/147547672?spm=1001.2014.3001.5502 (8)选择需要的环境
(9)点击 创建实例
(10)等待创建成功
3. 实时监控实例指标
(1)点击 查看监控
(2)实时监控实例的运行情况,精准分析,饱满测试!
4. 模型训练推理
(1)gz-cli 是由 GPUGEEK 平台专门为文件管理开发的命令行工具。该工具旨在为用户提供一种高效、便捷的方式来管理其在GPUGEEK平台上的数据。通过 gz-cli,能够执行多种操作,包括但上传、下载、查看文件列表以及管理文件。
(2)该工具的开发基于对平台用户文件管理需求的深入理解,旨在简化文件的存取过程,提升处理大量数据时的效率。无论是数据备份、数据共享还是日常文件管理,gz-cli 都能提供灵活的命令行解决方案,以满足广泛的用户需求。
(3)点击对应实例的 JupyterLab 即可自动打开 JupyterLab 控制台页面进行使用。
(4)进入实例控制台,可以相关数据配置,进行自己的模型配置,数据训练等!
二、在 GPUGEEK 平台使用大模型
1. 在线模型体验
(1)每个模型均有自己的体验区界面,通过 Web 表单的形式填写模型请求参数,并通过界面展示输出结果。首次运行模型即可通过体验的方式查看模型的效果,并在后续稳定使用 API 方式调用。体验模型同 API 调用均会根据每次调用量(如 Tokens 数)或该次请求运行时长扣费。
(2) 这里面市场比较火的模型基本上都覆盖了,我这里用deepseek大模型为例!点击左侧热门模型,选择 DeepSeek,界面deepseek模型在线应用,可以在线体验API,如图所示:
(3)这里我发给DeepSeek一个指令:请问每天锻炼多久最合理?
(4)DeepSeek给了一个比较全方位的解决方案,速度也是毫秒级响应,这点非常给力!
2. API 调用
(1)您可通过多种方式请求每个模型的 API,包括 HTTP、Node.js、Python,针对文本对话类的官方 API,支持 OpenAI 格式兼容。API 调用需要使用 API Token,您可在 API Token 页面查看并管理您的 API Token。
(2)点击 查看我的 API Token后,如图:
(3)返回到DeepSeek:
(4)进入到:
2.1 使用 HTTP 方式调用 API
curl -X POST "https://api.gpugeek.com/predictions" \
-H "Authorization: Bearer your_api_key" \
-H "Content-Type: application/json" \
-H "Stream: true" \
-d "{\"model\": \"GpuGeek/DeepSeek-R1-671B\", \"input\": {
\"frequency_penalty\": 0,
\"max_tokens\": 8192,
\"prompt\": \"\",
\"temperature\": 0.6,
\"top_p\": 0.7
}}"
2.2 使用 Python 客户端调用 API
(1)导入requests模块
API_KEY = "your_api_key"
(2)设置请求url
url = 'https://api.gpugeek.com/predictions';
(3)设置请求头
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json",
"Stream": "true"
}
(4)设置请求参数
data = {
"model": "GpuGeek/DeepSeek-R1-671B", # 替换成你的模型名称
# 替换成实际的入参
"input": {
"frequency_penalty": 0,
"max_tokens": 8192,
"prompt": "",
"temperature": 0.6,
"top_p": 0.7
}
}
(5)发送 POST 请求
response = requests.post(url, headers=headers, json=data)
(6)检查响应状态码并打印响应内容
if response.status_code == 200:
for line in response.iter_lines():
if line:
print(line.decode("utf-8"))
else:
print("Error:", response.status_code, response.text)
2.3 使用 Node.js 客户端调用 API
(1)导入 axios 模块和 stream 模块
const axios = require('axios');
const { Readable } = require('stream');
(2)设置 API_KEY 变量
const API_KEY = 'your_gpugeek_api_token';
(3)设置请求 URL
const url = 'https://api.gpugeek.com/predictions';
(4)设置请求头
const headers = {
"Authorization": "Bearer API_KEY",
"Content-Type": "application/json",
"Stream": "true"
};
(5)请求体数据
const data = {
"model": "GpuGeek/DeepSeek-R1-671B", // 替换成你的模型名称
// 替换成实际的入参
input: {
"frequency_penalty": 0,
"max_tokens": 8192,
"prompt": "",
"temperature": 0.6,
"top_p": 0.7
},
};
(6)发送 POST 请求
axios.post(url, data, {
headers: headers,
responseType: 'stream' // 设置响应类型为流
})
.then(response => {
const readableStream = Readable.from(response.data);
readableStream.on('data', (chunk) => {
console.log(chunk.toString('utf-8'));
});
readableStream.on('error', (err) => {
console.error('Stream error:', err.message);
});
})
.catch(error => {
if (error.response) {
console.error("Error:", error.response.status, error.response.statusText);
} else {
console.error("Error:", error.message);
}
});
2.4 OpenAI 兼容模式
(1)安装 OpenAI
pip install openai==1.63.2
(2)导入 OpenAI 模块
from openai import OpenAI
(3)初始化 OpenAI 客户端
client = OpenAI(
api_key="your_api_key", # your api token
base_url="https://api.gpugeek.com/v1", # endpoint
)
(4)发送请求
stream = client.chat.completions.create(
model="GpuGeek/DeepSeek-R1-671B",
stream=True,
frequency_penalty=0,
max_tokens=8192,
messages=[
{
"role": "user",
"content": "",
}
],
temperature=0.6,
top_p=0.7,
)
for chunk in stream:
print(chunk.choices[0].delta.content)
如果此文章对您有所帮助,那就请点个赞吧,收藏+关注 那就更棒啦,十分感谢!!!