条件极值变分问题与混合型泛函极值问题解析
1. 条件极值相关问题
1.1 等腰三角形的极值性质
在给定底边和面积的三角形中,等腰三角形的周长最短;在给定底边和周长的三角形中,等腰三角形的面积最大。证明方法是绘制一个椭圆,使三角形的底边恰好是椭圆两个焦点之间的长度。根据椭圆的性质,各种三角形的周长相等,但与不等边三角形相比,等腰三角形的高最大,所以其面积也最大,此时等腰三角形的顶点位于椭圆与短轴的交点处。根据互反原理,对于给定底边和面积的各种三角形,等腰三角形的周长最短。
1.2 条件极值曲线与无条件极值曲线
若(\lambda_1 = 0),则(H)与(\phi)相同,积分(a)的条件极值曲线就是无条件极值曲线。
2. 混合型泛函极值问题
2.1 混合型泛函的定义
在实际问题中,常遇到一种泛函,它除了包含通常的积分型泛函外,还包含形式与通常积分型泛函不同的附加项,这种形式的泛函称为混合型泛函,也叫广义泛函。其极值问题称为混合变分问题或广义变分问题。
2.2 简单混合型泛函的极值问题
考虑泛函(J = \int_{x_0}^{x_1} F(x, y, y’)dx + \Phi(x_0, y_0, x_1, y_1)),其中可变边界点((x_0, y_0)),((x_1, y_1))的坐标可能受某些条件约束,(\Phi(x_0, y_0, x_1, y_1))是常数项。该变分问题也称为Bolza问题,当(\Phi \equiv 0)时,称为Lagrange问题;当(F \equiv 0)时,称为Mayer问题。这三个问题可通过引入辅助变量相互转化