结合泛函极值_第2章泛函的极值.doc

第2章泛函的极值

第2章 泛函的极值

, , 如果, 当 (或者说)时, 有

那么, 我们称在处是连续的, 记为。

2.1.2 函数的可微性

更进一步, 如果存在, 使得

那么我们称在处是可微的, 或者说存在(一阶)导数,记为

或者记为

其中为梯度算子(或者Hamilton算子, 见附1)。同理, 可以定义该函数的两阶导数

及更高阶导数。 这里也称为Jacobi矩阵。

如果函数在某点足够光滑, 那么我们就可以在该点附近把函数作以下的展开

其中为高阶小量, 分别为函数的一阶微分和两阶微分。

换个角度来看, 如果

其中为的线性函数, 而为的两次函数, 那么为的一阶微分, 为的两阶微分。

2.1.3 函数的极值

对于足够小的, 如果,总有, 那么我们称在有极大值。 如果,总有, 那么我们称在有极小值。这里为的邻域。

如果在某一点附近足够光滑, 那么在有极值的必要条件为

或者说

更进一步, 如果, 那么在有极大(小)值的充分条件为

或者说是

其中表示是负定矩阵。

2.2泛函的极值

2.2.1函数的邻域

定义在区间上的函数的一阶邻域定义为: 对于, 始终满足

我们称同时满足上述两式的函数的集合是的一阶邻域。同样可以定义函数的高阶邻域。

2.2.2泛函的极值

变分引理: 如果函数, 对于在上满足的、足够光滑的任意函数, 如果总是成立

那么在必有

证明: 用反证法。 假设有使得, 不失一般性设 。由, 一定存在, 使

这样我们总可以构造下面一个连续函数

其中

可以证明

这样

显然与引理条件矛盾, 所以

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值