变分原理及相关不等式详解
1. 变分原理基础
在变分原理中,我们首先遇到一个重要的积分表达式:
[
\sum_{k = 0}^{n}(-1)^{2k}\int_{x_0}^{x_1}p_k(x)[y^{(k)}]^2dx = \sum_{k = 0}^{n}\int_{x_0}^{x_1}p_k(x)[y^{(k)}]^2dx
]
由于 (p_k(x) \in C^k[x_0, x_1]) 且 (p_k(x) \geq 0),可以得出算子 (T) 是正算子。此时,对应的泛函为:
[
J_{2n}[y] = (Ty, y) - 2(y, f) = \int_{x_0}^{x_1}\left(\sum_{k = 0}^{n}p_k(x)[y^{(k)}]^2 - 2f(x)y\right)dx
]
接下来看一个二阶微分方程的例子:
给定二阶微分方程 (-\frac{d}{dx}\left(p(x)\frac{du}{dx}\right) + r(x)u - \lambda u = 0),其中 (\lambda) 是参数,(p(x) \geq 0) 和 (r(x) - \lambda \geq 0) 均为连续函数。边界条件为 (u’(x_0) - au(x_0) = 0),(u’(x_1) + bu(x_1) = 0)((a),(b) 为非零常数)。
通过将问题转化为特定形式((y = u),(q = r - \lambda),(\alpha = \gamma = 1),(x),(\sigma = b),(A = B = 0)),可以直接写出对应的变分表达式:
[
J[y] = \int_{x_0