第十四周作业

本文通过Python的统计与可视化库对Anscombe四组数据进行深入分析,包括计算并展示每组数据中x与y变量的平均值、方差及相关系数,并分别拟合了四条线性回归线。此外,还使用seaborn库进行了数据可视化,直观地展示了四组数据的分布情况。
摘要由CSDN通过智能技术生成


代码:

#matplotlib inline

import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula.api as smf
import statistics as sta 
import scipy.stats.stats as stats

anascombe = sns.load_dataset("anscombe")
#显示平均数
print("the mean of x and y are:")
print(anascombe.groupby('dataset')['x','y'].mean())
print("\n")

#显示方差
print("the variance of x and y are:")
print(anascombe.groupby('dataset')['x', 'y'].var()) 
print("\n")

print("the correlation coefficient between x and y are:")
print(anascombe.groupby('dataset').corr())
print("\n")

print("the first linear regression line:")
lin_model_1 = smf.ols('y ~ x', anascombe.groupby('dataset').get_group('I')).fit()
print(lin_model_1.params)
print("\n")
print("the second linear regression line:")
lin_model_2 = smf.ols('y ~ x', anascombe.groupby('dataset').get_group('II')).fit()
print(lin_model_2.params)
print("\n")
print("the third linear regression line:")
lin_model_3 = smf.ols('y ~ x', anascombe.groupby('dataset').get_group('III')).fit()
print(lin_model_3.params)
print("\n")
print("the fourth linear regression line:")
lin_model_4 = smf.ols('y ~ x', anascombe.groupby('dataset').get_group('IV')).fit()
print(lin_model_4.params)

#part2
#数据可视化
sns.set(style='whitegrid')      
g = sns.FacetGrid(anascombe, col="dataset")  
g.map(plt.scatter, "x","y")  
plt.show()

part 1运行结果:




part 2运行结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值