- 博客(15)
- 收藏
- 关注

原创 prompts:“总结”终极提示指令教学
总结即对文档、音频、视频进行快速总结。在聊天工具输入“总结”提示词:原生应用集成:你可能根本不懂如何利用AI总结知识...总结是最常用,且最难的。总结分为概括知识、陈述知识、扩展知识。可根据参考内容总结或根据大模型训练知识自生成。同时请注意需要提取总结的角度和颗粒度(深度)。对总结内容输出格式控制。请注意,提取信息和总结不同,注意提示词的构造。内容角度(同时明确仅信息提取或允许重新构造总结文本)颗粒度输出格式首席AI分享圈建议使用原生应用或浏览器插件。
2024-07-29 05:28:06
1748
原创 Anthropic提示工程课程——第1章:基本提示结构
为了使您在本教程中更容易操作,我们提供了系统提示输入框,这些输入框用于输入一个完整的 CLAUDEMESSAGES() 公式,用于调用 Claude。例如,要调用位于单元格A1中的提示调用 Claude 3 Haiku,您将编写:=CLAUDEMESSAGES(A1, "claude-3-haiku-20240307", "system", "仅以世界语回应")你还可以在最后一个"助手:"消息中放入一些词语,让Claude从你停止的地方继续(关于这一点,我们将在后面的章节中详细讨论)。
2024-09-15 03:23:37
1094
原创 Anthropic提示工程课程——导读
本课程旨在为您提供如何工程化Claude中最佳提示的全面分步理解。✓ 掌握良好提示的基本结构✓ 识别常见故障模式并学习解决它们的“80/20”技巧✓ 理解克劳德的优点和缺点✓ 从零开始构建常见的用例的强大提示。
2024-09-15 03:21:13
779
原创 解密AI漫画解说视频从原理到实践(制作小说脚本)
我们用手工操作的方式完成了小说脚本文本处理工作,也是复现了大多数AI小说出图工具的底层逻辑。尽管每一种出图工具执行逻辑有差异,但从中你可以明白其中的原理,在这里再强调一次,我们不推荐任何工具。下一篇我们将进入正式的图像生成讲解,之前我们主要理解其中原理,学起来会很吃力,后续教学使用到配套工具,学习会很简单。预告:下一篇我们会讲解如何生成视频~铺垫那么多,终于到重点了...生成视频反而是所有教学中最简单的,重点是能找到顺手的工具、手头有丰富的素材。解密AI漫画系列文章目录。
2024-08-23 17:49:35
1251
原创 Browse AI:无代码提取和监控结构化数据
Browse AI是一个无需编码的云端网页自动化软件,旨在帮助用户无需编程便能从任意网站提取和监控数据。您只需用鼠标指点一次,就可以训练一个机器人来执行数据提取、监控和自动化的任务。并且能与超过7,000+的应用进行集成。本平台受到各行各业用户的青睐,是信息获取和自动化处理的有效工具。Browse AI还提供了预构建的机器人,可以快速解决一些常见的数据提取和监控需求。Browse AI还可以将任何网站转化为API,方便您进行数据集成和自定义工作流。Browse AI 官网首页。
2024-08-10 08:29:37
721
原创 解密AI漫画解说视频从原理到实践(获取并改写小说)
告诉各位一个很不幸的消息,当阅读完 解密AI漫画解说视频从原理到实践(分佣渠道篇)以后,一部分有相关经验的人在轻车熟路的根据代理商帮助文档进入实操环节,首次接触该行业的人进入代理商后台根本无从下手...第一步该做什么很关键,当然第一步你要想办法获取小说内容。本文除了教你获取小说内容外,还会详细的给出自动化小说改写方案,你只需要将几个方案拼接成自己的AGENT,即可一键改写出爆款网文。获取小说内容有技巧,尤其是新手,如果进入实操的第一步没想清楚,后面再努力只会事倍功半!
2024-08-08 06:44:13
1301
原创 解密AI漫画解说视频从原理到实践(分佣渠道篇)
👀自从AI技术疯狂兴起,小说短视频已经从过去的减压视频、风景视频进阶到用真正的漫画画面了!直接刷爆各大短视频平台,而且因为有差异性,内容又融合了喜欢看小说和看漫画的两大群体,流量直接翻倍!📈如果你对此有兴趣,先阅读之前的文章:解密AI漫画解说视频从原理到实践(原理篇)首席AI分享圈之前讲了原理,本篇将继续讲解如何获取佣金,发布漫画解说视频赚钱的原理就是在各大短视频平台为推广小说短视频或者短剧,通过留下“关键词”钩子,更简单的方式是挂载短视频平台链接,引导用户付费阅读或注册新用户来获得收益。
2024-08-03 07:51:18
1177
原创 冷饭热炒:流畅的创作儿童故事视频
AI教程中初期最热的赚钱思路就是教你创作儿童故事绘本,后来衍生出儿童故事动画,这些视频一看就会,一操作就卡住。究其原因还是门槛略高,而且内容和生成的图像质量堪忧。直到...我们要把创作精力分为三步,尽量在每一步中减少微调的精力,才能长久有效的输出内容。
2024-08-02 18:48:57
892
原创 解密AI漫画解说视频从原理到实践(原理篇)
很多人在悄悄赚钱的赛道,因为真的有稳定收益(虽然不多),所以没人会教你如何操作。一个可批量自动化执行、可复制且赚钱的项目很少有人透露其中的关键技术。本人并不从事这个行业,所以透露些也没有什么大不了,所以这可能是你为数不多了解该产业的科普文章,有兴趣您也可以尝试下。
2024-08-02 06:23:54
1510
原创 超能画布:AI写真创作快速上手篇
为了保证生图质量和融合效果,在超能画布中建议尽量选择浅色简单背景的图片,避免人物占比过小的图片。轮廓控制提取带有渐变效果的边缘线条,可保持生成图像的人物、服饰、背景元素的构图位置不变。:在最后一个提示词后单击,输入想要加入的提示词,单击空白区域或者按enter进行添加。风格参照用于提升生成图画面质感,开启后可为上传图增加更多细节元素。强化细节用于提升生成图画面质感,开启后可为上传图增加更多细节元素。:即不希望画面中出现的元素,一般比较通用,保持默认即可。景深将提取上传图的景深关系,用于保持画面构图的景别。
2024-08-01 12:13:43
765
原创 评估大模型长上下文能力:大海捞针测试的实际应用问题
大海捞针测试(灵感来自NeedleInAHaystack)是指通过将关键信息随机插入一段长文本的不同位置,形成大语言模型(LLM) 的Prompt,通过测试大模型是否能从长文本中提取出关键信息,从而测试大模型的长文本信息提取能力的一种方法,可反映LLM长文本理解的基本能力。为什么要做大海捞针——插针测试以长上下文替代复杂的RAG检索策略,支持长上下文大模型以月之暗面和anthropic为代表。 了解大模型对召回的各类事实知识是否理解,以此合理设计应用。 召回的事实知识随着长度变化
2024-08-01 12:10:09
1352
原创 Llama 3.1:系列模型原理讲解论文(章节6-9)
6 推论我们研究了两种主要技术来提高 Llama 3 405B 模型的推理效率:(1) 管道并行和 (2) FP8 量化。我们已公开发布了 FP8 量化的实现。下载全文PDF(7.4万字):https://www.aisharenet.com/llama-3yigeduoa/ 6.1 管道并行 (Pipeline Parallelism)当使用 BF16 表示模型参数时,Llama 3 405B 模型无法装入单个配备 8 个 Nvidia H100 GPU 的机器的 GPU 内存。为了解决
2024-07-31 01:32:54
633
原创 Llama 3.1:系列模型原理讲解论文(章节4-5)
4 后续训练 我们通过应用多轮后续训练来生成与齐 Llama 3 模型。这些后续训练基于预训练的检查点,并结合人类反馈进行模型对齐(Ouyang 等人,2022;Rafailov 等人,2024)。每轮后续训练都包括监督微调 (SFT),之后是直接偏好优化 (DPO; Rafailov 等人,2024),使用通过人工标注或合成生成的示例进行。我们在第 4.1 节和第 4.2 节分别描述了我们的后续训练建模和数据方法。此外,我们将在第 4.3 节进一步详细介绍定制的数据整理策略,以提高模型的
2024-07-30 23:59:44
615
原创 Llama 3.1:系列模型原理讲解论文(章节1-3)
本文介绍了一系列新的基础模型,称为 Llama 3。Llama 3 是一个语言模型群体,天生支持多语言、代码编写、推理和工具使用。我们最大的模型是一个具有 4050 亿个参数和高达 128,000 个标记的上下文窗口的密集型 Transformer。本文对 Llama 3 进行了一系列广泛的经验评估。结果表明,Llama 3 在许多任务上都能够达到与 GPT-4 等领先语言模型相当的质量。
2024-07-30 22:34:24
789
原创 COT及相关高级提示变种提示词讲解
首席AI分享圈:虽然基础的提示技巧(如零样本/少样本示例或指令式提示)非常高效,但面对一些复杂难题(如数学/编程或需要多步骤逻辑推理的问题)时,更复杂的提示可能更为有效。由于大型语言模型(LLM)在处理这类问题时自然存在困难(其推理能力并不会随着模型规模的增大而单调提升),因此大部分关于提示设计的研究都聚焦于如何提升推理和解决复杂问题的能力上。我们的退货政策是,客户可以在购买商品的 30 天内进行退货。简单的启发式方法可以是问题的长度(例如,60 个 tokens)和理由的步骤数(例如,5 个推理步骤)。
2024-07-27 14:26:43
845
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人