在本文中,我将介绍如何通过Azure OpenAI服务使用大模型进行文本生成。我们将详细讲解环境配置、API调用以及一些常见问题的处理方法,并附上相应的代码示例。
环境配置
首先,确保你已经拥有一个Azure订阅,并申请了Azure OpenAI服务的访问权限。然后,按照以下步骤配置你的环境:
记录下你的"模型名称"和"部署名称",在连接到你的LLM时需要用到。
配置环境变量
使用Azure部署的OpenAI模型与普通的OpenAI调用非常相似,只需要配置一些额外的环境变量。
import os
os.environ["OPENAI_API_KEY"] = "<your-api-key>"
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://<your-resource-name>.openai.azure.com/"
os.environ["OPENAI_API_VERSION"] = "2023-07-01-preview"
使用你的LLM
from llama_index.llms.azure_openai import AzureOpenAI
# 传入引擎和模型参数
llm = AzureOpenAI(
engine="my-custom-llm",
model="gpt-35-turbo-16k",
temperature=0.0,
azure_endpoint="https://<your-resource-name>.openai.azure.com/",
api_key="<your-api-key>",
api_version="2023-07-01-preview",
)
此代码示例展示了如何通过Azure OpenAI服务调用模型,并配置相应的环境变量。
调用文本生成接口
以下是一个简单的文本生成示例:
response = llm.complete("天空是如此美丽和")
print(response) # 输出: 太阳明亮地照耀着。白色的云朵懒洋洋地漂浮在天空中,形成一幅如画的景象。天空的蓝色带来了一种宁静和平静的感觉。这是一个完美的日子,适合在户外享受阳光和微风。天空似乎无边无际,让我们想起了世界的广阔和美丽。这是一个提醒我们珍惜生活中简单乐趣的机会,并花一点时间欣赏周围的自然奇观。
//中转API
调用聊天接口
以下是一个简单的聊天示例:
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(role="system", content="你是一名性格多彩的海盗。"),
ChatMessage(role="user", content="你好"),
]
response = llm.chat(messages)
print(response) # 输出: 啊哈,船员!今天这风和日丽,你好吗?我是多彩的海盗船长Jolly Roger!是什么让你来到我的船上?
response = llm.stream_chat(messages)
for r in response:
print(r.delta, end="") # 输出: 啊哈,船员!今天这风和日丽,你好吗?我是多彩的海盗船长Jolly Roger!是什么让你来到我的船上?
常见问题处理
API调用失败
- 错误信息:
AuthenticationError
- 解决方法:检查API密钥是否正确,并确保环境变量已正确配置。
响应延迟高
- 原因:网络延迟或模型负载高。
- 解决方法:尝试使用更接近你地理位置的Azure区域,或使用较小的模型以减少延迟。
文本生成结果不准确
- 原因:输入提示不够具体或模型参数设置不当。
- 解决方法:优化输入提示,或调整模型参数如
temperature
。
- 解决方法:优化输入提示,或调整模型参数如
如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!