数论之乘法逆元

一、定义

指数学领域群G中任意一个元素a,都在G中有唯一的逆元a‘,具有性质a×a’=a’×a=e,其中e为该群的单位元。(可以理解为倒数,因为积是单位e)

二、作用

在求组合数取模的时候,当 Cmn = n!m!(nm)! 中的分母过大时,可能会爆出long long的内存范围,取模处理对于除法并不适用,所以我们可以用逆元将除法换成乘法。

三、性质

假设b存在乘法逆元,即与m互质(充要条件)。
设c是b的逆元,即b∗c≡1(mod m),
那么有a/b(mod m) =(a/b)∗1(mod m) =(a/b)∗b∗c(mod m) =a∗c(mod m)
即,除以一个数取模等于乘以这个数的逆元取模。

四、求法

1.逆元求法一般用拓展欧几里得定理。
2.m为质数时直接用费马小定理,m为非质数时用欧拉函数。
3.m为质数时,还可以用神奇的线性方法。

1.拓展欧几里得定理 ——要求a,m互素

(1).简单证明:
欧几里得算法:gcd(a,b)。
扩展欧几里得:一定能找到x和y,使得a*x+b*y=gcd(a,b)。当a与b互质的时候,我们可以得到gcd(a,b)=1,a*x+b*y=1,等式两边同时mod b,即可得到a*x≡1(mod b),因此x是a的逆元。

而用扩展欧几里得求出乘法逆元则是求出最小的x非负整数解,对于x有通解x0+(b/gcd)*t,因此对于最后的结果%b的绝对值便可得到(以防b为负),如果结果为负,则加上abs(b)便可得到最小的结果。←不是很明白 遇到题再说

(2).代码

int extgcd(int a, int b, int& x, int& y)
{
    int d = a;
    if(b)
    {
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }
    else 
    {
        x = 1;
        y = 0;
    }
    return d;
}
int mod_inverse(int a, int m)
{
    int x, y;
    extgcd(a, m, x, y);
    return (m + x % m) % m;
}
2.费马小定理 ——m为素数

(1).简单证明
费马小定理:假如m是质数,且gcd(a,m)=1,那么 am1 ≡1(mod m)。

根据这个公式,进行一下变形可以得到 am2 a1 (mod m),所以我们可以说 am2 为a的乘法逆元。
(2).代码
利用快速幂求出。


ll power_mod(ll a, ll b, ll mod)
{
    ll ans = 1;
    while (b)
    {
        if (b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
inv = power_mod(a, mod - 2, mod);
欧拉函数 ——m为非素数

(1).简单证明
欧拉函数:对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目。例如φ(8)=4,因为1,3,5,7均和8互质。
欧拉定理:若a,p为正整数,且a,p互质,则 aφ(p) ≡1(mod p)。

对上式变形,得 aφ(p)1 a1 (mod p),所以 aφ(p)1 是a的逆元。

long long euler(int p)  
{  
    long long ans=p,a=p;  
    long long i;  
    for(i=2;i*i<=a;i++)  
    {  
        if(a%i==0)  
        {  
            ans=ans/i*(i-1);  
            while(a%i==0)  
                a/=i;  
        }  
    }  
    if(a>1)  
        ans=ans/a*(a-1);  
    return ans;  
}  

long long eu=euler(mod)-1;  

long long inv(long long a)  
{  
    return Pow(a,eu);  
}  

long long C(long long n,long long m)  
{  
    if(n<m)  
        return 0;  
    return fac[n]*inv(fac[m])%mod*inv(fac[n-m])%mod;  
}  
3.神奇的线性方法 ——m为素数

规定m为质数,且 11 ≡1(mod m)
设m=k∗a+b,b<a,1<a<m,即k∗a+b≡0(mod m)
两边同时乘以 a1 b1 ,得到
k∗ b1 + a1 ≡0(mod m) ,移项得
a1 ≡−k∗ b1 (mod m) ,
又因为k= ma ,b=m mod a
所以 a1 ≡− ma (mmoda)1 (mod m)
从头开始扫一遍即可,时间复杂度O(n)

(2)代码

int inv[maxn];
inv[1] = 1;
for(int i = 2; i < maxn; i++)
    inv[i] = (p - p / i) * inv[p % i] % p;

参考博客:
三种求逆元的方法写的很清晰
师哥写的很详细XD

当然各种定理还是参考了我们神奇的大百度23333

ps:拖了这么久的逆元终于写完了O(∩_∩)O~~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值