光学遥感显著性目标检测2023-2024论文学习

GRSL 2023: Attention-Aware Three-Branch Network for Salient Object Detection in Remote Sensing Images

在这里插入图片描述

基于encoder-decoder框架,提出了一系列缝合模块,GCA,FDUC,MSDC,RA。

GRSL 2023:ORSI Salient Object Detection via Cross-Scale Interaction and Enlarged Receptive Field

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于encoder-decoder框架,提出了三个缝合性模块,GLM,FSCM,EIM。
GLM:论文中没有给出图例,根据论文,GLM是基于通道维度的GAP和GMP对f5特征进行重新加权
FSCM:基于残差连接和dilation卷积,还有spatial attention,对特征进行润色
EIM:基于多尺度特征和空间,通道注意力,对特征进行润色

ISPRS 2023:Global–local–global context-aware network for salient object detection in optical remote sensing images

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

提出了GLGCNet,基于encoder-decoder框架,包含两个创新性模块,saliency-up module和edge assignment module,奇淫技巧堆模块无营养。

JSTARS 2023:An Important Pick-and-Pass Gated Refinement Network for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

奇淫技巧,堆模块

JSTARS 2023: Semantic-Edge Interactive Network for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

奇淫技巧,堆模块,毫无意义

TCSVT 2023:Edge and Skeleton Guidance Network for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分为两个阶段训练,第一个阶段,三个任务损失监督,saliency map,edge map,Skeleton map
第二个阶段,根据第一阶段的预测,进行融合,学习一个最终的saliency map
堆模块,SGA,MIF

TGRS 2023:Adaptive Edge-Aware Semantic Interaction Network for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述

堆模块,LDAM,MFEM,DSIM

在这里插入图片描述

Local Detail Aggregation Module (LDAM):通过CA,SA,average pooling,max pooling得到融合特征

在这里插入图片描述

Multiscale Feature Extraction Module (MFEM):通过不同的dilation conv多尺度的特征进行提取,得到联合特征

在这里插入图片描述

Deep Semantic Interaction Module (DSIM):该模块通过一种专门设计的图投影方法,将特征图转换为图结构,并通过三个并行的图卷积分支进行深度语义推理,从而能够从语义角度准确识别显著目标。

TGRS 2023:Adaptive Spatial Tokenization Transformer for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述

a novel dynamic spatial tokenization transformer
a specific dense token aggregation decoder (DTAD) is proposed
adaptive spatial tokenization module (ASTM),

TGRS 2023:Boundary-Aware Network With Two-Stage Partial Decoders for Salient Object Detection in Remote Sensing Images

在这里插入图片描述

提出了一个BANet,包含两个decoder,一个监督saliency map,一个监督contour map
堆模块,提出了一个RMS模块,采用多尺度卷积核对一个特征进行多尺度的聚合
堆模块,提出了一个MFA模块,对三个尺度的特征进行上采样和解码融合

TGRS 2023:Boundary-Semantic Collaborative Guidance Network With Dual-Stream Feedback Mechanism for Salient Object Detection in Optical Remote Sensing Imagery

在这里插入图片描述

propose a novel BSCGNet dedicated to ORSI-SOD

在这里插入图片描述

a boundary protection calibration (BPC) module for the encoder,
the dual feature feedback complementary (DFFC) module

在这里插入图片描述

the adaptive feedback refinement (AFR) module
https://github.com/YUHsss/BSCGNet
奇淫技巧,堆模块,毫无意义

TGRS 2023:CRNet: Channel-Enhanced Remodeling-Based Network for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述

CEM:channel enhance module

在这里插入图片描述

RFM:redefined feature module

在这里插入图片描述

奇淫技巧,堆模块,毫无意义

TGRS 2023:Lightweight Salient Object Detection in Optical Remote-Sensing Images via Semantic Matching and Edge Alignment

在这里插入图片描述

奇淫技巧,堆模块,毫无意义

TGRS 2023:ORSI Salient Object Detection via Bidimensional Attention and Full-Stage Semantic Guidance

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

奇淫技巧,堆模块,毫无意义

TGRS 2023:Progressive Context-Aware Dynamic Network for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Dynamic Filtering Networks:卷积核的kernel参数根据input的特征学习生成

[32] B. D. Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool, “Dynamic filter networks,” in Proc. Adv. Neural Inform. Process. Syst., 2016, pp. 1–14.
[33] J. He, Z. Deng, and Y. Qiao, “Dynamic multi-scale filters for semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 3561–3571.
[34] Y. Pang, L. Zhang, X. Zhao, and H. Lu, “Hierarchical dynamic filtering network for RGB-D salient object detection,” in Proc. Eur. Conf. Comput. Vis., A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham, Switzerland: Springer, 2020, pp. 235–252.
[42] M. Zhang et al., “Dynamic context-sensitive filtering network for video salient object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 1533–1543.
[43] Y. Nirkin, L. Wolf, and T. Hassner, “HyperSeg: Patch-wise hypernetwork for real-time semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 4060–4069.
[44] B. Zhang, Y. liu, Z. Tian, and C. Shen, “Dynamic neural representational decoders for high-resolution semantic segmentation,” in Proc. Adv. Neural Inform. Process. Syst., 2021, pp. 17388–17399.

TIP 2023:Salient Object Detection in Optical Remote Sensing Images Driven by Transformer

https://github.com/MathLee/GeleNet

在这里插入图片描述

propose a transformer-based ORSI-SOD solution, GeleNet, with the global-to-local paradigm
propose the D-SWSAM and its variant SWSAM to enhance local interactions of the extracted global feature embeddings.
propose the KTM to enhance contextual interactions of two middle-level features

ESWA 2024:MEANet: An effective and lightweight solution for salient object detection in optical remote sensing images

在这里插入图片描述

灌水两个模块,MEA,MSG
Multiscale edge-embedded attention module (MEA)

在这里插入图片描述

Multilevel semantic guidance module (MSG)

在这里插入图片描述

GRSL 2024:Global–Local Semantic Interaction Network for Salient Object Detection in Optical Remote Sensing Images With Scribble Supervision

在这里插入图片描述

propose a high-performance yet cost-effective RSI-SOD method, the global-local semantic interaction network (GLSIN), utilizing an encoder-decoder architecture. In the encoder, we synergize the Transformer with CNN to design a Dual Branch Encoder, capturing both global semantic information and local spatial details within images.
propose the global-local affinity block (GLAB) to facilitate effective information interaction and the flexible multiscale polishing gate (FMPG) to further enhance salient features.
In the decoder, we construct a Feature Shrinkage Decoder incorporating the global-local fusion block (GLFB).
奇淫技巧,堆模块
弱监督 scribble 学习:This includes applying partial cross-entropy lossPCE to the saliency map and integrating a gated structure-aware lossGSA [16] as an auxiliary component, focusing the model on salient object structures.

[16] J. Zhang, X. Yu, A. Li, P. Song, B. Liu, and Y. Dai, “Weakly-supervised salient object detection via scribble annotations,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 12546–12555.

TGRS 2024:United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值