
深度学习
文章平均质量分 85
StarPrayers.
靡不有初,鲜克有终。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络中的非线性激活函数:从原理到实践
本文深入探讨了神经网络中激活函数的核心作用。非线性激活函数赋予神经网络学习复杂模式的能力,避免了仅能进行线性变换的局限。文章详细解析了Sigmoid、Tanh、ReLU及其变体等多种激活函数的特性、适用场景和优缺点,并给出了不同情境下的选择策略。通过可视化代码直观展示了各函数的形状特征,帮助理解其数学本质。最后强调,激活函数是神经网络的"灵魂",合理选择对模型性能至关重要,需要根据具体任务和实验结果进行权衡。原创 2025-10-12 14:30:32 · 777 阅读 · 0 评论 -
池化 (Pooling) 学习笔记
本文介绍了卷积神经网络中的池化操作,重点阐述了最大池化(MaxPooling)的工作原理和实现方法。池化层通过降维、增强平移不变性和防止过拟合来优化网络性能。文章详细讲解了使用PyTorch实现最大池化的代码流程,包括数据准备、网络定义和TensorBoard可视化对比。此外,还概述了平均池化、全局池化等其他常见池化方法及其应用场景。不同池化操作各有特点,实际应用中需根据任务需求选择最合适的类型。原创 2025-10-12 13:05:56 · 214 阅读 · 0 评论 -
卷积层(Convolutional Layer)学习笔记
摘要:卷积层是CNN的核心组件,通过卷积核在输入数据上滑动提取局部特征,生成特征图。3×3卷积核是最常用尺寸,能平衡特征提取能力和计算效率。卷积层具有局部连接、权值共享和位移不变性等优势,大幅减少参数量的同时保持强大特征提取能力。PyTorch中的nn.Conv2d模块实现二维卷积操作,支持调整通道数、步长和填充等参数。卷积层广泛应用于图像分类、目标检测等领域,并衍生出转置卷积、深度可分离卷积等变体。可视化代码展示了3×3卷积核处理5×5输入的完整过程。原创 2025-10-08 22:31:19 · 1077 阅读 · 0 评论 -
关于可视化卷积核和特征图的深度理解
本文介绍了如何使用PyTorch和Matplotlib可视化卷积神经网络中的卷积核和特征图。代码提供了两个核心功能:1)可视化卷积核,展示模型学习到的特征提取方式;2)可视化特征图,显示输入图像经过卷积处理后的响应结果。通过这两个可视化工具,可以直观理解CNN的工作原理:浅层卷积核通常检测边缘、纹理等基础特征,而深层卷积核学习更复杂的语义特征。文中还提供了自定义模型和预训练模型(VGG16)的演示示例,帮助用户观察不同卷积核处理输入后的特征变化。这些可视化工具将抽象的卷积操作转化为可理解的图像展示,有助于分原创 2025-09-29 21:53:56 · 611 阅读 · 0 评论 -
Dataset 和 DataLoader
在PyTorch等框架中,Dataset和DataLoader是数据处理的核心组件。Dataset负责数据存储和单个样本读取,通过__getitem__和__len__方法定义数据访问方式。DataLoader基于Dataset实现高效批处理,支持数据打乱、并行加载等功能,为模型训练提供迭代接口。二者分工明确:Dataset定义"读什么",DataLoader控制"怎么喂",共同构建高效数据管道,是深度学习工作流的关键部分。原创 2025-09-28 14:22:17 · 284 阅读 · 0 评论 -
transforms学习笔记
PyTorch transforms是图像预处理工具集,主要用于数据格式转换(如PIL转Tensor)、图像增强(缩放/裁剪/旋转)和标准化处理。核心操作包括ToTensor(归一化像素值并调整维度)、Normalize(标准化)、Resize(调整尺寸)和RandomCrop(随机裁剪)。通过Compose可组合多个变换,训练集通常使用随机裁剪翻转等增强操作,验证集则仅需基础转换。这些工具与DataLoader配合使用,能有效提升模型泛化能力,尤其在数据有限时,数据增强技术尤为重要。原创 2025-09-24 21:14:05 · 900 阅读 · 0 评论 -
关于pycharm高版本导入torch的问题
B站小土堆PyTorch安装教程存在版本兼容问题,适用于PyCharm2025.2.1的解决方案如下:1)通过Anaconda Prompt创建python=3.10的conda环境;2)根据显卡选择安装对应版本的PyTorch;3)在PyCharm配置时关键要选择Scripts/conda.exe而非python.exe;4)最后在设置中添加已有解释器路径。该方案解决了高版本PyCharm无法识别环境的问题,经版本号验证即可确认安装成功。完整教程可参考提供的两个B站视频链接。原创 2025-09-18 15:48:27 · 659 阅读 · 0 评论 -
Tensorboard学习记录
Tensorboard是机器学习实验的可视化工具,支持PyTorch和TensorFlow。核心功能包括标量可视化(如损失值、准确率)、图像展示(输入/输出/中间层)、模型结构可视化等。使用流程:1)安装tensorboard库;2)通过SummaryWriter写入日志数据;3)启动服务查看结果。进阶用法包括多指标对比、特征图可视化、权重分布跟踪、高维数据降维等。需注意路径处理、端口占用等问题。该工具通过直观展示实验过程,帮助开发者优化模型,是机器学习工作流中的重要组件。原创 2025-09-22 20:02:47 · 891 阅读 · 0 评论