背包问题

这篇博客详细介绍了01背包问题,包括问题描述、解题思路、递推关系式以及如何输出最优解。01背包问题是寻找最大价值组合的优化问题,涉及动态规划的运用。博主给出了递推公式,并提供了回溯法找出最优解的思路。同时,还引用了CSDN博主的代码示例进行超基础讲解。
摘要由CSDN通过智能技术生成

01背包问题

1、问题描述:

有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

为描述方便,首先定义如下变量:
Vi:表示第 i 个物品的价值;
Wi:表示第 i 个物品的体积;
V(i, j):表示当前背包容量为j时,前 i 个物品最佳组合对应的价值。

2、解题思路:

1、建立模型,即求max(V1X1 + V2X2 + … + VnXn);(背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品不选或选)
2、寻找约束条件,W1X1+W2X2+…+WnXn < capacity;

3、寻找递推关系式,面对当前商品有两种可能性:

  • 包的当前容量小于当前商品体积时,当前商品装不下,此时的价值与前i-1个的价值是一样的,即V(i, j) = V(i-1, j)
  • 包的当前容量大于或等于当前商品体积时,还有足够的容量可以装当前商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i, j)=max{V(i-1, j),V(i-1, j-w(i))+v(i)}。其中V(i-1, j)表示不装,V(i-1, j-w(i))+v(i) 表示装了第i个商品,在比当前背包容量减少w(i)时的结果上V(i-1, j-w(i)))价值增加了v(i);

3、递推关系式

  • 当 j < w(i) 时: V(i, j) = V(i-1, j)
  • 当 j >= w(i)时:V(i, j) = max{V(i-1, j),V(i-1, j-w(i))+v(i)}

4、输出最优解

通过上面的方法可以求出背包问题的最优解,但还不知道这个最优解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

V(i, j) = V(i-1, j)时,说明没有选择第i 个商品,则回到V(i-1, j)
V(i, j) = V(i-1, j-W(i)) + V(i)时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1, j-w(i))
一直遍历到i=0结束为止,所有解的组成都会找到。

5、01背包问题代码

#include <iostream>
#include <vector>
using namespace std;
int Max(int x, int y) {
   
    return x > y ? x : y;
}

void PrintOptimal(vector<vector<int>> &dp, vector
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值