鸽巢原理

Pigeonhole principle

EXT : Pigeonhole Principle

Let q 1 , q 2 , ⋯ q n q_1,q_2,\cdots q_n q1,q2,qn be positive integer, put − n + 1 + ∑ i = 1 n q i -n + 1 + \sum_{i=1}^{n} q_i n+1+i=1nqi items into n n n containers, either the first contains at least q 1 q_1 q1 items, or the second contains at least q 2 q_2 q2 items, …, or the n n nth contains at least q n q_n qn items.

中国剩余定理(CRT)

m 1 , m 2 , ⋯   , m r ∈ N m_1,m_2, \cdots , m_r \in \mathbb{N} m1,m2,,mrN are pairwise coprime , so for all a 1 , a 2 , ⋯   , a r a_1 , a_2 , \cdots ,a_r a1,a2,,ar we can find a x x x s.t.

x = a i (   m o d   m i ) ∀ i ∈ { 1 , 2 , ⋯   , r } x = a_i ( \bmod m_i ) \quad \forall i \in \{1,2 ,\cdots, r\} x=ai(modmi)i{1,2,,r}

let M = ∏ i = 1 r m i M = \prod _{i=1}^{r} m_i M=i=1rmi , t i t_i ti is the inverse element for M m i (   m o d   m i ) {M \over m_i} (\bmod m_i) miM(modmi).

x = ∑ i = 1 r a i M m i t i x = \sum_{i=1}^{r} a_i {M \over m_i} t_i x=i=1raimiMti is a solution

Ramsey 定理

Ramsey定理实际上是鸽巢原理的加强形式的扩展。

问题的引入

K 6 → K 3 , K 3 K_6 \rightarrow K_3,K_3 K6K3,K3 K 6 K_6 K6中仅有红蓝两种颜色的边,一定存在一个红色的 K 3 K_3 K3或者蓝色的 K 3 K_3 K3

Ramsey 定理

若存在最小整数 p p p使得 K p → K m , K n K_p \rightarrow K_m,K_n KpKm,Kn,记做 p = r ( m , n ) p = r(m,n) p=r(m,n)为Ramsey数,这样的数一定存在。

Ramsey数的结论

  1. r ( 2 , n ) = r ( n , 2 ) = n r(2,n) = r(n,2) = n r(2,n)=r(n,2)=n
  2. r ( m , n ) ≤ r ( m − 1 , n ) + r ( m , n − 1 ) r(m,n) \le r(m-1,n) + r(m,n-1) r(m,n)r(m1,n)+r(m,n1)
  3. r ( 3 , 4 ) = 9 r(3,4) = 9 r(3,4)=9
r(3,4)= 9的证明

Ramsey 定理的推广形式

满足条件 K p → K n 1 , K n 2 , ⋯   , K n l K_p \rightarrow K_{n_1} , K_{n_2} , \cdots, K_{n_l} KpKn1,Kn2,,Knl 的最小整数称为 r ( n 1 , n 2 , ⋯   , n l ) r(n_1,n_2,\cdots , n_l) r(n1,n2,,nl)

r(3,3,3) = 17

Ramsey 更一般的形式

给定一正整数 t t t,及 q 1 , q 2 , ⋯ q k ≥ t q_1,q_2,\cdots q_k \ge t q1,q2,qkt,存在一个整数 p p p,将其中每一个 t t t元素子集指定为 k k k中颜色 c 1 , c 2 , ⋯   , c k c_1,c_2,\cdots,c_k c1,c2,,ck中的一种,满足:

  1. 存在 q 1 q_1 q1个元素,所有 t t t子集都被染成指定颜色 c 1 c_1 c1
  2. … …
  3. 存在 q k q_k qk个元素,所有 t t t子集都被染成指定颜色 c k c_k ck

r t ( q 1 , ⋯   , q k ) r_t(q_1,\cdots,q_k) rt(q1,,qk)为最小的 p p p

特例

The Strong form of Pigeonhole Principle : r 1 ( q 1 , q 2 , ⋯   , q k ) = q 1 + q 2 + ⋯ + q k + n − 1 r_1(q_1,q_2,\cdots,q_k) = q_1 + q_2 + \cdots + q_k + n - 1 r1(q1,q2,,qk)=q1+q2++qk+n1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值