定义
- 鸽巢原理
- 狄利克雷(Dirichlet)抽屉原理
- 鞋盒(shoebox)原理
以上三种称呼指的都是同个原理的不同称呼,这里统称为鸽巢原理。
鸽巢原理讨论的是类似如果有许多鸽子飞进不够多的鸽巢内,那么至少要有一个鸽巢被两个或多个鸽子占据的问题。
鸽巢原理的两种形式
简单形式
定理1:如果要把 n + 1 n+1 n+1个物体放进 n n n个盒子,那么至少有一个盒子包含两个或更多的物体
加强形式
设 q 1 , q 2 , . . . , q n q_1,q_2,...,q_n q1,q2,...,qn是正整数。如果将 q 1 + q 2 + . . . + q n − n + 1 q_1+q_2+...+q_n-n+1 q1+q2+...+qn−n+1个物体放入 n n n个盒子内,那么或者第一个盒子至少含有 q 1 q_1 q1个物体,或者第二个盒子至少含有 q 2 q_2 q2个物体,…,或者第 n n n个盒子至少含有 q n q_n qn个物体。
题目解析
题目1
思路:任意数被n整除,余数范围0到n-1。对于3个数的和能被3整除,即对这3个数的余数情况分析,抽屉就是余数[0][1][2]三种抽屉,往里塞入分析即可证明,证明2比较符合这个思路,证明1有点偏分类,不太好想,本质一样。
题目2
思路:被6整除后的余数有0到5,共6种,有6种抽屉,但6个数的和要能被6整除做分类情况讨论太繁琐,这里将被6整除拆分为两步,先被3整除,再被2整除。这里被3整除引用了题目1的结论,将11个整数拆分为3组,没有考虑a10和a11,将前9个分成了b1,b2,b3,分析这3个数能否被2整除。
这里又引用了一个常识,3个整数至少有两个是同奇或同偶。轻松解决。(发现鸽巢原理引用了很多常识性数学知识来解决,要不断积累这些知识)
题目 3
思路:至少有不同的两对数,这里要将两个数组合成一个,和为104,组合方式以和为104的方式组合,得到类似的抽屉。
题目4
思路:3个相邻数为一组,分为10组,这里要证存在一组和不小于47,可知要以不等式的方式去分这10组。这里采用了反证法。
题目5
思路:任取7个数,取出的其中两个数大数不会超过小数的两倍,则要将1到126按大小倍数为两倍分。
题目6
思路:如果你选择n个整数来满足差3,则这个n个整数刚好将1-3n划分为3元集,再选1个整数,这1个整数必在任意一个3元集中
题目7
思路:被什么整除,联想到余数,0-99,题目1是定义了被3整除,有3个抽屉0-2,比较好分类,题目2被6整除利用了分布,将6拆分。这里定义100种抽屉太多不好分类,拆分也繁琐,但这里要求两者的和或差能被100整除,组合方式只需构造两种余数即可。(这里有一个常识:和或差的两个数能被100数整除,那他们的余数加起来为100,或者差为0)
题目8
思路:和题目7类似,不过不是按被整除的余数分组,这里简单的说明存在两个数,差是12,那么只需从1-20分为差为12的组就行了。
题目9
思路:两个整数和或差是10的倍数,这里就不是整除了,但原理一样,找余数,被10整除的余数0-9。常识:只要两个整数的余数的和或者差为10或者0,那么这两个整数的和或者差就是10的倍数。
方式依旧,对余数以和或差为10或者0分组。
题目10
思路:方式构造2014部分和序列,任意性已经包含在a1-a2014中,不用对a1-a2014进行区分,再分两种情况:
①是如果这些序列其中之一是2014的倍数,的证
②如果没有其中之一是2014的倍数,则这2014个序列和除2014的余数没有整除,余数为1-2013,但是有2014个则肯定有两个部分和同余,的证
题目11
思路:无,感觉这句话是个废话,但是用数学表达了这句话。
题目12
思路:将同余分为同一组,这里66余3没有分组,是因为66余3可以由22余1和33余0得出,所以不需要分组。如果你判断不出来,那你就将66余3分组,然后按照步骤也可以得到一样的结果
题目13
思路:分为2018均有朋友的情况和有人没朋友的情况,其中均有朋友的情况中,每人的朋友数量均在1-2017,(自己不算自己朋友)2018个人,有2018种处于1-2017的情况,必有两种相同。有人没有朋友的情况讨论同上。
题目14
思路:同题目12,修改了公式罢了
题目15
思路:任何两个人要么是朋友,要么是陌生人。考虑一个 情况,ABCDEF,假设只有两人是朋友关系,那剩下都是陌生人,假设只有两人是陌生人,那剩下都是朋友,所以6人中必有3人相互之间是满足陌生人关系或者朋友关系.(我感觉5人就满足证明条件了)
题目16
思路:同上中国剩余定理类似题目套路