【低显存】 diffusion 爆显存的解决方法

本文介绍了如何在深度学习模型中使用latentdiffusion技术,包括如何加载预训练组件、使用AutoencoderKL和UniPCMultistepScheduler进行编码和调度,以及如何通过autocast实现低精度训练以提高内存效率。此外,还提供了关于半精度训练适用场景的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 降低分辨率
  2. 降低通道数
  3. 使用latent diffusion,例如stable
  4. 使用低精度训练

下面将分别讲解如何使用这些方法。

使用latent diffusion

目前的主流模型都用了encoder降低中间层resolution,但是有一些比较老的工作,比如sr3,还是老架构。GitHub上有很多改进的工作,可以找找看。不想换的话,只需要配置好diffusers库,然后:
使用图像的低维表示而不是实际的像素空间,这使得它的内存效率更高。编码器将图像压缩为更小的表示,解码器将压缩的表示转换回图像。对于文本到图像模型,您需要一个分词器和一个编码器来生成文本嵌入。SD具有三个独立的预训练模型。

使用**from_pretrained()方法加载所有这些组件。您可以在预训练[runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)**检查点中找到它们,每个组件都存储在单独的子文件夹中

from PIL import Image
import torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值