Ada-STNet :Adaptive Spatio-temporal Graph Neural Network for traffic forecasting 学习笔记

Ada-STNet是一种创新的图学习模型,专用于交通预测。它结合了自适应邻接矩阵、两阶段训练策略和时空卷积,旨在从宏观和微观层面提升预测准确性。文章详细探讨了模型设计、结构和算法优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ada-STNet

Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
(自适应图学习——从宏观和微观两个角度获得最优的图邻接矩阵 + 两阶段训练策略 + 时空卷积架构)

图卷积部分可以改进


一、背景与模型设计

在这里插入图片描述


二、模型结构

在这里插入图片描述


三、模型结构

自适应图学习结构
时空卷积架构
两阶段训练策略


四、算法结构

算法结构


代码可讨论
onenote笔记可分享


评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值