高效质数判断算法及其JS实现

本文介绍了高效质数判断算法的理论基础,包括质数定义、质数与合数的区别,以及最小质因子的取值范围。通过研究质数分布,提出优化算法,特别是针对6n+1和6n+5形式的数字。文章还提供了JS实现代码,并邀请读者交流反馈。
摘要由CSDN通过智能技术生成

高效质数判断算法及其JS实现

理论基础

1.质数的定义

大于1的正整数中,只能被1和自身整除的数称为质数。
正整数显然不能被大于自己的正整数整除,于是
最基本的素数判别法是:
对于正整数num( num >= 2 ),如果不能被集合[2,num]中的任何整数整除,则num为质数。

2.质数与合数

在[2,+∞)范围中的正整数只能分为两类


  1. 质数,是组成合数的原子自身不可再分
  2. 合数,由质数相乘得到

也就是说,合数都能分成若干个质因子,例如18=2*3*3,
势必存在 最小的质因子,对于18来说就是2。

3.最小质因子的取值范围

任意合数num都能分成a和b两个因子( a, b >= 2,都为整数 ,且a <= b ),即num=a*b,一定有a, b <= num
假设a为合数,则a= a1a2...an

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值