Tensorflow2.0

1.Tensor 张量:

纬度名字例子
0-D0标量 scales = 1 2 3
1-D1向量 vectorv = [1, 2, 3]
2-D2矩阵 matrixm = [ [1, 2, 3], [4, 5, 6], [7, 8, 9]] 
3-D3张量 tensort = [ [ [ n个 ] ] ]

1.1. tensorflow数据类型:

1. tf.int, tf.float 

tf.int32, tf.float32, tf.float64

2. tf.bool

tf.constant([True, False])

3. tf.string

tf.constant("Hello world")

1.2. 如何创建一个张量:

import tensorflow as tf
a = tf.constant([1, 5], dtype=tf.int64)
print(a)
print(a.dtype)
print(a.shape)

输出:

tf.Tensor([1 5], shape=(2,), dtype=int64)
<dtype: 'int64'>
(2,)

1.3. 如何把numpy变为tensor:

import tensorflow as tf
import numpy as np
a = np.arange(0, 5)
b = tf.convert_to_tensor( a, dtype=tf.int64)
print(a)
print(b)

输出:

[0 1 2 3 4]
tf.Tensor([0 1 2 3 4], shape=(5,), dtype=int64)

通过convert_to_tensor把numpy数据类型转化为tensor类型。

1.4. 创建一些简单多维的张量:

a.创建全为0的张量:

import tensorflow as tf
a = tf.zeros([2, 3])
print(a)

输出:

tf.Tensor(
[[0. 0. 0.]
 [0. 0. 0.]], shape=(2, 3), dtype=float32)

b.创建全为1的张量:

import tensorflow as tf
a = tf.ones([2, 3])
print(a)

输出:

tf.Tensor(
[[1. 1. 1.]
 [1. 1. 1.]], shape=(2, 3), dtype=float32)

c.创建为指定项的张量:

import tensorflow as tf
a = tf.fill([2, 3], 9)
print(a)

输出:

tf.Tensor(
[[9 9 9]
 [9 9 9]], shape=(2, 3), dtype=int32)

1.5. 创建随机数的张量:

正态分布随机数:

import tensorflow as tf
a = tf.random.normal([2, 2], mean=0.5, stddev=1)
print(a)

输出:

tf.Tensor(
[[0.37068003 1.455114  ]
 [1.6106157  1.4800272 ]], shape=(2, 2), dtype=float32)

截断式正态分布随机数:

import tensorflow as tf
a = tf.random.truncated_normal([2, 2], mean=0.5, stddev=1)
print(a)

输出:

tf.Tensor(
[[2.363211   0.97205293]
 [1.7942774  1.2452044 ]], shape=(2, 2), dtype=float32)

均匀分布随机数:

import tensorflow as tf
a = tf.random.uniform([2,2], minval=0, maxval=1 )
print(a)

输出:

tf.Tensor(
[[0.49529576 0.77657926]
 [0.01204515 0.41324592]], shape=(2, 2), dtype=float32)

2.Tensor常用函数:

2.1. 强转类型:

tf.cast(张量名,dtype=数据类型)强制转换数据类型

tf.reduce_min(张量名)得到张量中的最小值

tf.reduce_max(张量名)得到张量中的最大值

import tensorflow as tf
x1 = tf.constant([1, 2, 3], dtype=tf.float64)
print(x1)

x2 = tf.cast(x1, dtype=tf.int64)
print(x2)

print(tf.reduce_min(x2),
      tf.reduce_max(x2))

输出:

tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int64)
tf.Tensor(1, shape=(), dtype=int64) tf.Tensor(3, shape=(), dtype=int64)

2.2. axis理解:

在矩阵中,列为axis=0 即纬度,而行为axis=1 即经度。

import tensorflow as tf
x1 = tf.constant([[1, 2, 3], [2, 2, 3]])
print(x1)
print(tf.reduce_mean(x1))
print(tf.reduce_sum(x1, axis=1))

输出:

tf.Tensor(
[[1 2 3]
 [2 2 3]], shape=(2, 3), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor([6 7], shape=(2,), dtype=int32)

tf.reduce_mean(张量名, axis=维度):求维度中的张量的平均值,如果没有维度就是求全部

tf.reduce_sum(张量名, axis=维度):同理,求的是和

2.3. 标记可训练:

tf.Variable(初始值)

它是将变量标记为“可训练”,被标记的变量会在反向传播中被标记,在神经网络训练中,经常被用于标记待训练参数。

例如: w = tf.Variable(tf.random.normal([2, 2], mean=0, stddev=1)

2.4. 对应元素的四则运算:

只有维度相同的张量才可以进行四则运算。

a.实现两个张量的元素相加:

tf.add(张量1,张量2)

b.实现两个张量的元素相减:

tf.subtract(张量1,张量2)

c.实现两个张量的元素相乘:

tf.multiply(张量1,张量2)

d.实现两个张量的元素相除:

tf.divide(张量1, 张量2)

import tensorflow as tf
a = tf.ones([1, 3], dtype=tf.int32)
b = tf.fill([1, 3], 3)
print(a)
print(b)
print(tf.add(a, b))
print(tf.subtract(a, b))
print(tf.multiply(a, b))
print(tf.divide(a, b))

输出:

tf.Tensor([[1 1 1]], shape=(1, 3), dtype=int32)
tf.Tensor([[3 3 3]], shape=(1, 3), dtype=int32)
tf.Tensor([[4 4 4]], shape=(1, 3), dtype=int32)
tf.Tensor([[-2 -2 -2]], shape=(1, 3), dtype=int32)
tf.Tensor([[3 3 3]], shape=(1, 3), dtype=int32)
tf.Tensor([[0.33333333 0.33333333 0.33333333]], shape=(1, 3), dtype=float64)

2.5. 平方、次方和开方:

tf.square(张量名)求张量的平方

tf.pow(张量名,n次方) 求张量的n次方

tf.sqrt(张量名)求张量的开方

import tensorflow as tf
a = tf.fill([1, 2], 4.)
print(a)
print(tf.square(a))
print(tf.pow(a, 3))
print(tf.sqrt(a))

输出:

tf.Tensor([[4. 4.]], shape=(1, 2), dtype=float32)
tf.Tensor([[16. 16.]], shape=(1, 2), dtype=float32)
tf.Tensor([[64. 64.]], shape=(1, 2), dtype=float32)
tf.Tensor([[2. 2.]], shape=(1, 2), dtype=float32)

2.6. 张量的矩阵乘:

tf.matmul(矩阵1,矩阵2)

import tensorflow as tf
a = tf.ones([3, 2])
b = tf.fill([2, 3], 3.)
print(tf.matmul(a, b))

输出:

tf.Tensor(
[[6. 6. 6.]
 [6. 6. 6.]
 [6. 6. 6.]], shape=(3, 3), dtype=float32)

2.7. 对张量进行分配:

tf.data.Dataset.from_tensor_slices((输入特征, 标签))

无论是numpy和tensor都可以

import tensorflow as tf
feature = tf.constant([12, 23, 10,17])
labels = tf.constant([0, 1, 1, 0])
dataset = tf.data.Dataset.from_tensor_slices((feature, labels))
print(dataset)
for element in dataset:
    print(element)

输出:

<_TensorSliceDataset element_spec=(TensorSpec(shape=(), dtype=tf.int32, name=None), TensorSpec(shape=(), dtype=tf.int32, name=None))>
(<tf.Tensor: shape=(), dtype=int32, numpy=12>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: shape=(), dtype=int32, numpy=23>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=10>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=17>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)

2.8. 张量梯度计算:

tf.GradientTape 用于计算梯度

写法:

with tf.GradientTape as tape:
若干个计算过程
grad = tape.gradient(函数, 对谁求导)
import tensorflow as tf
with tf.GradientTape() as tape:
 w = tf.Variable(tf.constant(3.0))
 loss = tf.pow(w, 2)
grad = tape.gradient(loss, w)
print(grad)

输出:

tf.Tensor(6.0, shape=(), dtype=float32)

2.9. 遍历函数:

enumerate 是python的内置函数,它可遍历每个元素,组合:索引,元素,常在for循环中使用。

seq = ['one', 'two', 'three']
for i, element in enumerate(seq):
    print(i, element)

输出:

0 one
1 two
2 three

2.10. 独热编码:

tf.one_hot,常用做标签:1表示是,0表示否

比如:猫 1, 狗 2, 羊 3

标签:2

独热码:(0 , 1, 0)

tf.one_hot()将待转换数据,转换为one-hot形式输出。

tf.one_hot(待转数据, depth=几分类)

import tensorflow as tf
classes = 3
labels = tf.constant([1, 0, 2])
output = tf.one_hot(labels, depth=classes)
print(output)

输出:

tf.Tensor(
[[0. 1. 0.]
 [1. 0. 0.]
 [0. 0. 1.]], shape=(3, 3), dtype=float32)

2.11. softmax概率分布:

tf.nn.softmax

当n分类的n个输出(y0, y1,....., yn-1),通过softmax函数,便得到了符合概率分布了。

\forall x P(X = x) \in [0, 1] 且 \sum_{x}^{}P(X = x) = 1

把数字大小变为概率大小,且概率之和为1。

import tensorflow as tf
y = tf.constant([1.01, 2.01, -0.66])
pro_y = tf.nn.softmax(y)
print("After softmax,pro_y is", pro_y)

输出:

After softmax,pro_y is tf.Tensor([0.25598174 0.69583046 0.04818781], shape=(3,), dtype=float32)

2.12. 更新减法:

assign_sub:

1.赋值操作,更新参数的值并返回

2.在调用assign_sub,之前需要tf.Variable定义变量w为可训练(自动更新)

import tensorflow as tf
w = tf.Variable(4)
w.assign_sub(1)
print(w)

输出:

<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>

2.13. 寻找同维度中最大值索引:

tf.argmax(张量名,axis=操作轴)

import tensorflow as tf
import numpy as np
w = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3], [8, 7, 2]])
print(w)
print(tf.argmax(w, axis=1))
print(tf.argmax(w, axis=0))

输出:

[[1 2 3]
 [2 3 4]
 [5 4 3]
 [8 7 2]]
tf.Tensor([2 2 0 0], shape=(4,), dtype=int64)
tf.Tensor([3 3 1], shape=(3,), dtype=int64)

3.鸢尾花分类:

预备操作:导包

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

第一步获取数据:使用了sklearn中提供的数据集

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

第二步数据乱序处理:

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

第三步对数据进行分类:分为训练集和测试集,并对数据集的数据类型进行修改,方便后面的矩阵相乘。

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

第四步组合:把标签和数据变为一个组合,并设置了batch,一个batch有32组。

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

第五步设置参数:设置一系列的参数。

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

第六步训练数据:对数据进行训练得到合适的数值。

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

第七步测试数据:检查数据的准确率以及loss率。

# 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)

第八步数据可视化:用matplotlib画图展示acc与loss。

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

完整代码:

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值