Java集合系列---HashMap源码解析(超详细)

5 篇文章 0 订阅

1 HashMap

1)特性:

底层数据结构是数组+链表+红黑树运行null键和null值,,非线程安全,不保证有序,插入和读取顺序不保证一致,不保证有序,在扩容时,元素的顺序会被重新打乱
实现原理:
Hashmap先采用算法将key散列为一个int值,这个int值对应到数组的下标,如果散列值相同,则在该下标后连接链表,如果链表长度超过8,则构造红黑树,

2)基本属性:
//默认初始化大小
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16、、就是2的四次方
static final int MAXIMUM_CAPACITY = 1 << 30;//最大容器
static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认加载因子
static final int TREEIFY_THRESHOLD = 8;//这个值是从链表变成红黑树的阀门,如果大于这个值就会转变
static final int UNTREEIFY_THRESHOLD = 6;// 红黑树节点小于6的时候转链表
static final int MIN_TREEIFY_CAPACITY = 64;//转换为红黑树之前还得判断数组的容量是否大于64
 transient Node<K,V>[] table;//存放数据的·1底层数组
 transient Set<Map.Entry<K,V>> entrySet;//通过entrySet变量,提供遍历的功能
 transient int size;//数组table的实际大小
 transient int modCount;//操作次数
 int threshold;//判断是否需要调整HashMap,如果table数组还没被分配时,阈值threshold等于数组的数组容量,反之threshold = capacity * load factor
 final float loadFactor;//负载因子

Node的属性

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
 
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
 }

(1)hash:表示key的hash
(2)key:表示我们给出的key,就是map(key,value)中的key
(3)value:表示我们给出的value,就是map(key,value)中的value
(4)next:如果hash相同,会形成链表,当前链表节点的下一个链表的引用,即链表后继
如果链表长度大于8,为了查询性能,会把链表转为红黑树(TreeNode)

 static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
 }

(1)parent:表示节点的父节点
(2)left:表示左节点
(3)right:表示右节点
(4)prev:表示前驱节点
(5)red:表示是红树还是黑树

3)构造方法
public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))//小于0或者为空
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;//负载因子 
        //返回2的n次方 》=initialCapacity
        this.threshold = tableSizeFor(initialCapacity);//
    }
public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    } 
4)核心方法

1 put方法

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
//获取key的hash值
static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); //注意当key为null是会返回0,hashmap允许key为null进行存储,且存在table[0]的位置。另外会对获取的hashcode进行高低16位按位与,减小hash冲突的概率
}
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)//table是底层数组,判断table是否为空或者null
            n = (tab = resize()).length;// 成立用resize()扩容
        if ((p = tab[i = (n - 1) & hash]) == null)//计算插入的元素在hash桶中的位置,若该位置还没有元素
            tab[i] = newNode(hash, key, value, null);//插入
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&//判断该位置的第一个元素是否与我们要插入的元素相同
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;//如果相同则记录该节点到变量e
            else if (p instanceof TreeNode)//否则判断第一个节点是否为树类型的节点
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//如果是,则调用树类型的插入操作
            else {//否则,第一个元素既不与我们要插入的节点相同,又不是树类型的节点,那么去遍历链表
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {//若节点为空则表示已经遍历到链表的最后,此时新建一个节点并加入到末尾
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st//判断链表的长度是否大于8
                            treeifyBin(tab, hash); //将链表转为红黑树
                        break;
                    }
                    if (e.hash == hash &&//如果某个节点与我们即将插入的节点相同,则跳出循环
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key//此时e节点中记录的是hashMap中与我们要插入的节点相同的节点,在这里统一进行处理
                V oldValue = e.value;//记录旧的value值
                if (!onlyIfAbsent || oldValue == null)//通过onlyIfAbsent与oldValue的值判断是否要进行覆盖
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;//返回旧的值
            }
        }
        ++modCount;//代表hashMap的结构被改变
        if (++size > threshold)//判断是否要进行扩容
            resize();
        afterNodeInsertion(evict);
        return null;
    }

扩容函数

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;//记录原来的table
        int oldCap = (oldTab == null) ? 0 : oldTab.length;//判断原来的table是否为空,若为空则oldCap = 0,否则oldCap = oldTab.length
        int oldThr = threshold;//记录原来的阙值
        int newCap, newThr = 0;//创建变量用来记录新的容量和阙值
        if (oldCap > 0) {//判断原来的容量是否大于0,由于HashMap是在第一次put是才会进行初始化,因此此方法也是判断table是要扩容还是要初始化.大于0代表已经初始化过了
            if (oldCap >= MAXIMUM_CAPACITY) {//如果原来的容量大于0且大于等于最大值
                threshold = Integer.MAX_VALUE;//将阙值设为最大值,并返回原来的容量,代表该table已经不能再进行扩容
                return oldTab;
            }
            //原来的容量乘以2
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold//新的界限为原来界限的一倍
        }
        //如果说oldCap为0(代表hashMap没有被初始化过)且原来的阙值大于0
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
            //否则说明我们在新建hashMap是没有指定初始值或是我们将初始大小设为了0
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;//设为默认值16
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//阙值设为16*0.75
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;//设置当前的阙值为新的阙值
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//以新的容量去新建一个table数组
        table = newTab;
        if (oldTab != null) {//若原来的table是否为空,代表现在是要进行扩容操作
            for (int j = 0; j < oldCap; ++j) {//遍历hash桶
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {//遍历每一个hash桶中的元素,并记录第一个节点到变量e
                    oldTab[j] = null;//将原来的位置设为null
                    if (e.next == null)//如果只有一个元素
                        newTab[e.hash & (newCap - 1)] = e;//计算新的位置,并插入
                    else if (e instanceof TreeNode)//如果是树节点,则转为红黑树的扩容操作
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;//将每一个桶中的元素分为两类,扩容后的位置与原来相同则记录到loHead,loTail这个链表中,扩容后与原来的位置不同则记录到hiHead,hiTail中
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;//将loHead链表写入到新的table
                        }
                        if (hiTail != null) {//将hiHead链表记录到新的table
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

删除方法

 public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
 final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //找到要删除的元素存在p所在的下标
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //hash没有冲突
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //定位删除的节点
                node = p;
                //不止是一个节点在该位置上
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do { //遍历链表
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //node要删除的元素
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else//p的下一个元素等于要删除的元素的下一个
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

使用迭代器对数组进行遍历,中间不能对map进行操作

final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            //修改次数不等于最后一次修改次数的话就会报错
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);//寻找数组中不为空的节点进行遍历
            }
            return e;
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值