普林斯顿微积分硬核笔记
文章平均质量分 83
《普林斯顿微积分》自习笔记
鞠老板
这个作者很懒,什么都没留下…
展开
-
3.极限导论1
2021.10.15一、极限定义"当 xxx 趋于 2 (但不等于2)时,f(x)f(x)f(x)的极限等于 1 ",表示为:limx→2f(x)=1orf(x)→1当x→2\lim_{x \to 2}{f(x)}=1\qquad or \qquad f(x)\to1当x\to 2x→2limf(x)=1orf(x)→1当x→2二、左极限和右极限左极限、右极限的标准书写方式:limx→2−f(x)=1(左极限)\lim_{x\to 2^-}f(x) = 1\tag{左极限}x→2−l原创 2021-10-15 17:51:03 · 1741 阅读 · 0 评论 -
2.三角函数基础2(普林斯顿微积分笔记)
2021.10.13一、三角恒等式基本恒等公式tan(θ)=sin(θ)cos(θ)tan(\theta)={sin(\theta)\over cos(\theta)}tan(θ)=cos(θ)sin(θ)毕达哥拉斯定理公式(勾股定理)a2+b2=c2a^2+b^2=c^2a2+b2=c2sin2(α)+cos2(α)=1(原型)sin^2(\alpha)+cos^2(\alpha)=1 \tag{原型}sin2(α)+cos2(α)=1(原型)2.1 两侧同除cos2(α)cos^原创 2021-10-13 15:56:11 · 1098 阅读 · 0 评论 -
1.三角函数基础1(普林斯顿微积分笔记)
2021.10.11一、弧度换算r:360° (θ-角度)= 2π(r-弧度)二、常用三角函数rrr000π6π\over 66ππ4π\over 44ππ3π\over 33ππ2π\over 22πsin000121\over 221121\over \sqrt {2}2132\sqrt{3}\over 223111cos11132\sqrt{3}\over 223121\over \sqrt{2}21121\over原创 2021-10-12 15:33:58 · 423 阅读 · 0 评论