2.三角函数基础2(普林斯顿微积分笔记)

2021.10.13

一、三角恒等式
  1. 基本恒等公式
    t a n ( θ ) = s i n ( θ ) c o s ( θ ) tan(\theta)={sin(\theta)\over cos(\theta)} tan(θ)=cos(θ)sin(θ)

  2. 毕达哥拉斯定理公式(勾股定理)
    a 2 + b 2 = c 2 a^2+b^2=c^2 a2+b2=c2
    s i n 2 ( α ) + c o s 2 ( α ) = 1 (原型) sin^2(\alpha)+cos^2(\alpha)=1 \tag{原型} sin2(α)+cos2(α)=1()
    2.1 两侧同除 c o s 2 ( α ) cos^2(\alpha) cos2(α)
    t a n 2 ( α ) + 1 = s e c 2 ( α ) (变式1) tan^2(\alpha)+1=sec^2(\alpha) \tag{变式1} tan2(α)+1=sec2(α)(1)
    2.2 两侧同除 s i n 2 ( α ) sin^2(\alpha) sin2(α)
    1 + c o t 2 ( α ) = c s c 2 ( α ) (变式2) 1+cot^2(\alpha)=csc^2(\alpha) \tag{变式2} 1+cot2(α)=csc2(α)(2)

  3. 互余关系‘co’公式(complementary))
    说两个角互余, 意味着它们的 和是 π/2 (或 90◦ ),所以有:
    s i n ( x ) = c o s ( π 2 − x ) c o s ( x ) = s i n ( π 2 − x ) sin(x)=cos({\pi\over 2}-x){\qquad} cos(x)=sin({\pi\over 2}-x) sin(x)=cos(2πx)cos(x)=sin(2πx)
    t a n ( x ) = c o t ( π 2 − x ) c o t ( x ) = t a n ( π 2 − x ) tan(x)=cot({\pi\over 2}-x){\qquad} cot(x)=tan({\pi\over 2}-x) tan(x)=cot(2πx)cot(x)=tan(2πx)
    s e c ( x ) = c s c ( π 2 − x ) c s c ( x ) = s e c ( π 2 − x ) sec(x)=csc({\pi\over 2}-x){\qquad} csc(x)=sec({\pi\over 2}-x) sec(x)=csc(2πx)csc(x)=sec(2πx)

  4. 角的加减法公式
    s i n ( α + β ) = s i n ( α ) c o s ( β ) + c o s ( α ) s i n ( β ) sin(\alpha+\beta)=sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta) sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
    c o s ( α + β ) = c o s ( α ) c o s ( β ) − s i n ( α ) s i n ( β ) (原型:加法) cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)\tag{原型:加法} cos(α+β)=cos(α)cos(β)sin(α)sin(β)()
    s i n ( α − β ) = s i n ( α ) c o s ( β ) − c o s ( α ) s i n ( β ) sin(\alpha-\beta)=sin(\alpha)cos(\beta)-cos(\alpha)sin(\beta) sin(αβ)=sin(α)cos(β)cos(α)sin(β)
    c o s ( α − β ) = c o s ( α ) c o s ( β ) + s i n ( α ) s i n ( β ) (原型:减法) cos(\alpha-\beta)=cos(\alpha)cos(\beta)+sin(\alpha)sin(\beta)\tag{原型:减法} cos(αβ)=cos(α)cos(β)+sin(α)sin(β)()

  5. 倍角公式
    令“角的加减法公式”中 α = β = x \alpha = \beta = x α=β=x则有:
    sin ⁡ ( 2 x ) = 2 sin ⁡ ( x ) cos ⁡ ( x ) \sin(2x)=2\sin(x)\cos(x) sin(2x)=2sin(x)cos(x)
    cos ⁡ ( 2 x ) = cos ⁡ 2 ( x ) − sin ⁡ 2 ( x ) (倍角“余弦”原型) \cos(2x)=\cos^2(x)-\sin^2(x)\tag{倍角“余弦”原型} cos(2x)=cos2(x)sin2(x)()
    根据《毕达哥拉斯定理》简化上述"余弦"公式:
    cos ⁡ ( 2 x ) = 2 c o s 2 ( x ) − 1 (倍角“余弦”变型1) \cos(2x)=2cos^2(x)-1\tag{倍角“余弦”变型1} cos(2x)=2cos2(x)1(1)
    cos ⁡ ( 2 x ) = 1 − 2 sin ⁡ 2 ( x ) (倍角“余弦”变型1) \cos(2x)=1-2\sin^2(x)\tag{倍角“余弦”变型1} cos(2x)=12sin2(x)(1)

  6. 问题求解” sin ⁡ ( 4 x ) \sin(4x) sin(4x)“和” cos ⁡ ( 4 x ) \cos(4x) cos(4x)“:
    求解 sin ⁡ ( 4 x ) \sin(4x) sin(4x):
    sin ⁡ ( 4 x ) = 2 sin ⁡ ( 2 x ) cos ⁡ ( 2 x ) \sin(4x)=2\sin(2x)\cos(2x) sin(4x)=2sin(2x)cos(2x)
    sin ⁡ ( 4 x ) = 4 sin ⁡ ( x ) cos ⁡ ( x ) ∗ 2 ( cos ⁡ 2 ( x ) − 1 ) \sin(4x)=4\sin(x)\cos(x)*2(\cos^2(x)-1) sin(4x)=4sin(x)cos(x)2(cos2(x)1)
    sin ⁡ ( 4 x ) = 8 sin ⁡ ( x ) cos ⁡ 3 ( x ) − 4 sin ⁡ ( x ) cos ⁡ ( x ) (结果) \sin(4x)=8\sin(x)\cos^3(x)-4\sin(x)\cos(x)\tag{结果} sin(4x)=8sin(x)cos3(x)4sin(x)cos(x)()
    求解 cos ⁡ ( 4 x ) \cos(4x) cos(4x):
    cos ⁡ ( 4 x ) = 2 c o s 2 ( 2 x ) − 1 \cos(4x)=2cos^2(2x)-1 cos(4x)=2cos2(2x)1
    cos ⁡ ( 4 x ) = 2 ( 2 cos ⁡ 2 ( x ) − 1 ) 2 − 1 \cos(4x)=2(2\cos^2(x)-1)^2-1 cos(4x)=2(2cos2(x)1)21
    cos ⁡ ( 4 x ) = 8 cos ⁡ 4 ( x ) − 4 cos ⁡ 2 ( x ) + 1 (结果) \cos(4x)=8\cos^4(x)-4\cos^2(x)+1\tag{结果} cos(4x)=8cos4(x)4cos2(x)+1()

  7. 角的加减法公式的证明过程:
    s i n ( α + β ) = s i n ( α ) c o s ( β ) + c o s ( α ) s i n ( β ) sin(\alpha+\beta)=sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta) sin(α+β)=sin(α)cos(β)+cos(α)sin(β)

假设:
做单位圆 r=1,单位圆上取四个角,幅角分别是a,a+b,90°-b和90°。的四个点ABCD

此图片引用自知乎答主“AlphaBetaQuant”
AlphaBetaQuant

∵ ∠ D O B = ∠ A O C \because\angle DOB=\angle AOC DOB=AOC
∴ D B = A C (相同顶角和腰长的等腰三角形) \therefore DB=AC \tag{相同顶角和腰长的等腰三角形} DB=AC()
A ∴ [ cos ⁡ a − cos ⁡ ( π 2 − b ) ] 2 + [ sin ⁡ ( π 2 − b ) − sin ⁡ a ] 2 = A\therefore\sqrt{[\cos a-\cos({\pi\over 2}-b)]^2+[\sin({\pi\over 2}-b)-\sin a]^2}= A[cosacos(2πb)]2+[sin(2πb)sina]2 =
[ 1 − sin ⁡ ( a + b ) ] 2 + [ cos ⁡ ( a + b ) − 0 ] 2 \sqrt{[1-\sin(a+b)]^2+[\cos(a+b)-0]^2} [1sin(a+b)]2+[cos(a+b)0]2
现在我们对其进行化简:
[ cos ⁡ a − cos ⁡ ( π 2 − b ) ] 2 + [ sin ⁡ ( π 2 − b ) − sin ⁡ a ] 2 = [\cos a-\cos({\pi\over 2}-b)]^2+[\sin({\pi\over 2}-b)-\sin a]^2= [cosacos(2πb)]2+[sin(2πb)sina]2=
[ 1 − sin ⁡ ( a + b ) ] 2 + [ cos ⁡ ( a + b ) − 0 ] 2 [1-\sin(a+b)]^2+[\cos(a+b)-0]^2 [1sin(a+b)]2+[cos(a+b)0]2
∵ s i n ( x ) = c o s ( π 2 − x ) (互余关系) \because sin(x)=cos({\pi\over 2}-x)\tag {互余关系} sin(x)=cos(2πx)()
B ∴ ( cos ⁡ a − sin ⁡ b ) 2 + ( cos ⁡ b − sin ⁡ a ) 2 = B\therefore(\cos a-\sin b)^2+(\cos b-\sin a)^2= B(cosasinb)2+(cosbsina)2=
[ 1 − sin ⁡ ( a + b ) ] 2 + [ cos ⁡ ( a + b ) − 0 ] 2 [1-\sin(a+b)]^2+[\cos(a+b)-0]^2 [1sin(a+b)]2+[cos(a+b)0]2
拆解分别简化:
∴ B 公 式 形 式 : a + b = c \therefore B公式形式:a+b=c Ba+b=c
a = cos ⁡ 2 a + sin ⁡ 2 b − 2 cos ⁡ a sin ⁡ b a=\cos^2a+\sin^2b-2\cos a\sin b a=cos2a+sin2b2cosasinb
b = cos ⁡ 2 b + sin ⁡ 2 a − 2 cos ⁡ b sin ⁡ a b=\cos^2b+\sin^2a-2\cos b\sin a b=cos2b+sin2a2cosbsina
c = 1 + 2 sin ⁡ 2 ( a + b ) − 2 sin ⁡ ( a + b ) + cos ⁡ 2 ( a + b ) c=1+2\sin^2(a+b)-2\sin(a+b)+\cos^2(a+b) c=1+2sin2(a+b)2sin(a+b)+cos2(a+b)
∵ sin ⁡ 2 ( x ) + cos ⁡ 2 ( x ) = 1 (毕达哥拉斯) \because \sin^2(x)+\cos^2(x)=1\tag {毕达哥拉斯} sin2(x)+cos2(x)=1()
∴ a + b = 2 − 2 cos ⁡ a sin ⁡ b − 2 cos ⁡ b sin ⁡ a \therefore a+b=2-2\cos a\sin b-2\cos b\sin a a+b=22cosasinb2cosbsina
c = 2 − 2 sin ⁡ ( a + b ) c=2-2\sin(a+b) c=22sin(a+b)
∴ sin ⁡ ( a + b ) = cos ⁡ ( a ) s i n ( b ) + s i n ( a ) c o s ( b ) \therefore \sin(a+b)=\cos(a)sin(b)+sin(a)cos(b) sin(a+b)=cos(a)sin(b)+sin(a)cos(b)
证毕

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值