AP

from sklearn.datasets.samples_generator import make_blobs
import numpy as np
import matplotlib.pyplot as plt



'''
第一步:生成测试数据
    1.生成实际中心为centers的测试样本300个,
    2.Xn是包含150个(x,y)点的二维数组
    3.labels_true为其对应的真是类别标签
'''


def init_sample():
    ## 生成的测试数据的中心点
    centers = [[1, 1], [-2, -2]]
    ##生成数据
    Xn, labels_true = make_blobs(n_samples=6, centers=centers, cluster_std=0.3,
                                 random_state=0)
    # 3数据的长度,即:数据点的个数
    dataLen = len(Xn)

    return Xn, dataLen


'''
第二步:计算相似度矩阵
'''


def cal_simi(Xn):
    ##这个数据集的相似度矩阵,最终是二维数组
    simi = []
    for m in Xn:
        ##每个数字与所有数字的相似度列表,即矩阵中的一行
        temp = []
        for n in Xn:
            ##采用负的欧式距离计算相似度
            s = -np.sqrt((m[0] - n[0]) ** 2 + (m[1] - n[1]) ** 2)
            temp.append(s)
        simi.append(temp)

    ##设置参考度,即对角线的值,一般为最小值或者中值
    # p = np.min(simi)   ##11个中心
    # p = np.max(simi)  ##14个中心
    p = np.median(simi)  ##5个中心
    for i in range(dataLen):
        simi[i][i] = p
    return simi


'''
第三步:计算吸引度矩阵,即R
       公式1:r(n+1) =s(n)-(s(n)+a(n))-->简化写法,具体参见上图公式
       公式2:r(n+1)=(1-λ)*r(n+1)+λ*r(n)
'''


##初始化R矩阵、A矩阵
def init_R(dataLen):
    R = [[0] * dataLen for j in range(dataLen)]
    return R


def init_A(dataLen):
    A = [[0] * dataLen for j in range(dataLen)]
    return A


##迭代更新R矩阵
def iter_update_R(dataLen, R, A, simi):
    old_r = 0  ##更新前的某个r值
    lam = 0.1  ##阻尼系数,用于算法收敛
    ##此循环更新R矩阵
    for i in range(dataLen):
        for k in range(dataLen):
            old_r = R[i][k]
            if i != k:
                max1 = A[i][0] + R[i][0]  ##注意初始值的设置
                for j in range(dataLen):
                    if j != k:
                        if A[i][j] + R[i][j] > max1:
                            max1 = A[i][j] + R[i][j]
                ##更新后的R[i][k]值
                R[i][k] = simi[i][k] - max1
                ##带入阻尼系数重新更新
                R[i][k] = (1 - lam) * R[i][k] + lam * old_r
            else:
                max2 = simi[i][0]  ##注意初始值的设置
                for j in range(dataLen):
                    if j != k:
                        if simi[i][j] > max2:
                            max2 = simi[i][j]
                ##更新后的R[i][k]值
                R[i][k] = simi[i][k] - max2
                ##带入阻尼系数重新更新
                R[i][k] = (1 - lam) * R[i][k] + lam * old_r
    print("max_r:" + str(np.max(R)))
    # print(np.min(R))
    return R


'''
    第四步:计算归属度矩阵,即A
'''


##迭代更新A矩阵
def iter_update_A(dataLen, R, A):
    old_a = 0  ##更新前的某个a值
    lam = 0.1  ##阻尼系数,用于算法收敛
    ##此循环更新A矩阵
    for i in range(dataLen):
        for k in range(dataLen):
            old_a = A[i][k]
            if i == k:
                max3 = R[0][k]  ##注意初始值的设置
                for j in range(dataLen):
                    if j != k:
                        if R[j][k] > 0:
                            max3 += R[j][k]
                        else:
                            max3 += 0
                A[i][k] = max3
                ##带入阻尼系数更新A值
                A[i][k] = (1 - lam) * A[i][k] + lam * old_a
            else:
                max4 = R[0][k]  ##注意初始值的设置
                for j in range(dataLen):
                    ##上图公式中的i!=k 的求和部分
                    if j != k and j != i:
                        if R[j][k] > 0:
                            max4 += R[j][k]
                        else:
                            max4 += 0

                ##上图公式中的min部分
                if R[k][k] + max4 > 0:
                    A[i][k] = 0
                else:
                    A[i][k] = R[k][k] + max4

                ##带入阻尼系数更新A值
                A[i][k] = (1 - lam) * A[i][k] + lam * old_a
    print("max_a:" + str(np.max(A)))
    # print(np.min(A))
    return A


'''
   第5步:计算聚类中心
'''


##计算聚类中心
def cal_cls_center(dataLen, simi, R, A):
    ##进行聚类,不断迭代直到预设的迭代次数或者判断comp_cnt次后聚类中心不再变化
    max_iter = 200  ##最大迭代次数
    curr_iter = 0  ##当前迭代次数
    max_comp = 200  ##最大比较次数
    curr_comp = 0  ##当前比较次数
    class_cen = []  ##聚类中心列表,存储的是数据点在Xn中的索引
    while True:
        R = iter_update_R(dataLen, R, A, simi)
        A = iter_update_A(dataLen, R, A)

        ##开始计算聚类中心
        for k in range(dataLen):
            if R[k][k] + A[k][k] > 0:
                if k not in class_cen:
                    class_cen.append(k)
                else:
                    curr_comp += 1
        curr_iter += 1
        print(curr_iter)
        if curr_iter >= max_iter or curr_comp > max_comp:
            break
    return class_cen


if __name__ == '__main__':
    ##初始化数据
    Xn, dataLen = init_sample()
    ##初始化R、A矩阵
    R = init_R(dataLen)
    A = init_A(dataLen)
    ##计算相似度
    simi = cal_simi(Xn)
    ##输出聚类中心
    class_cen = cal_cls_center(dataLen, simi, R, A)
    # for i in class_cen:
    #    print(str(i)+":"+str(Xn[i]))
    # print(class_cen)

    ##根据聚类中心划分数据
    c_list = []
    for m in Xn:
        temp = []
        for j in class_cen:
            n = Xn[j]
            d = -np.sqrt((m[0] - n[0]) ** 2 + (m[1] - n[1]) ** 2)
            temp.append(d)
        ##按照是第几个数字作为聚类中心进行分类标识
        c = class_cen[temp.index(np.max(temp))]
        c_list.append(c)
    ##画图
    colors = ['red', 'blue', 'black', 'green', 'yellow']
    plt.figure(figsize=(8, 6))
    plt.xlim([-3, 3])
    plt.ylim([-3, 3])
    for i in range(dataLen):
        d1 = Xn[i]
        d2 = Xn[c_list[i]]
        c = class_cen.index(c_list[i])
        plt.plot([d2[0], d1[0]], [d2[1], d1[1]], color=colors[c], linewidth=1)

    plt.show()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAPAP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值