摘要:
题目:1.有序数组的平方977. 有序数组的平方 - 力扣(LeetCode)
2.滑动窗口(长度最小的子数组)
3.螺旋矩阵二
1.有序数组的平方:题目是:
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
- 输入:nums = [-4,-1,0,3,10]
- 输出:[0,1,9,16,100]
- 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
示例 2:
- 输入:nums = [-7,-3,2,3,11]
- 输出:[4,9,9,49,121]
思路:
由于原数组是有序数组,那么平方以后,最大值一定是在数组的头或者尾。中间的一定是最小的,基于此。用两个指针的方法分别标注头和尾,在用一个index变量从nums.length一直到0,为新数组赋值。复制规则就是i和j谁的位置数值平方大就先放谁然后选择i++或者j--。
解题思路:
循环条件是头指针i<=尾指针j。等于的原因是当头尾指向一块的时候也是要平方放入新数组result中的。
代码奉上:
class Solution {
public int[] sortedSquares(int[] nums) {
int[] result = new int[nums.length];
for(int i=0;i<result.length;i++){
result[i] = -1;
}
int index = nums.length-1;
int j =nums.length-1;
int i=0;
while(i<=j){
if(nums[i]*nums[i]>nums[j]*nums[j]){
result[index--] = nums[i]*nums[i];
i++;
}else{
result[index--] = nums[j]*nums[j];
j--;
}
}
return result;
}
}
感觉和快速排序类似,可以留坑,写一个快速排序的思路。
2.滑动窗口(重点)
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
- 输入:s = 7, nums = [2,3,1,2,4,3]
- 输出:2
- 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
显然用两个for循环,i用来遍历每一个元素,j遍历从i开始的后面的元素,期间判断元素和是不是>=s?记录长度,更新i,重新遍历j。
这样会超时。
那么怎么优化呢?
还是使用双指针,我们在删除元素的题时使用了双指针(实际是快慢指针,快指针for(fast=0;fast<nums.length;fast++),用快指针遍历所有元素,分两种情况:一种是nums[fast]!=target,那么就让快指针元素覆盖慢指针元素,接着slow++(注意,慢指针只有再这个情况是++操作),下一个情况就是target,这就需要直接下一循环即可,fast掠过他,等slow指向的时候就覆盖了)达到了块更新的效果。
另一个就是上面使用了头尾双指针,用来结合数组数据特性,特殊处理数组两边的数据。类似于快速排序。
思路:
滑动窗口也是用两个指针:关键在于理解怎么优化的?就是理解为什么双指针行?假设i与j已经满足一段子序列大于等于target了,按照暴力就应该i++循环找下一组子序列。这就造成了重复判断:因为i到j这一段已经走过一次了,j不从i+1位置走的话就是优化了。
解题方法:
窗口:i=0,j=0;开始。i为起点,j为终点,
窗口终点如何移动:i到j内的元素和与target相比,大于等于停止。否则j++;
窗口起点如何移动:当i到j内的元素和大于等于target时,i++,就是对应暴力的下一轮了
循环条件:j<nums,length时循环。
循环内部:注意while()这一块,详情看代码
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int i=0;
int sum = 0;
int sub =0;
boolean a = true;
int result = nums.length;
for(int j=0;j<nums.length;j++){
sum+=nums[j];
while(sum>=target){ //if不好的原因是,不能处理i+1---j内部还大于target情况,而若sum>=target持续,那还应该更新result
sub = j-i+1;
result = Math.min(result,sub); //保留结果
sum = sum-nums[i];
i++;
a= false;
}//循环结束i-j一定是sum<target
}
if(a){
return 0;
}
return result;
}
}
3.螺旋数组:这个就是考察数组循环的终止条件把握。
class Solution {
public int[][] generateMatrix(int n) {
int stratx = 0;
int i=0;
int j=0;
int sum=0;
int count =1;
int offset = 0;
int[][] nums = new int[n][n];
while(offset++<(n/2))
{//顶端从左至右
for(j=stratx;j<n-offset;j++){
nums[stratx][j] = count++;
}//右侧从上倒下
for(i=stratx;i<n-offset;i++){
nums[i][j] = count++;
}//底端从右到左
for(;j>=offset;j--){
nums[i][j] = count++;
}//左侧从下到上
for(;i>=offset;i--){
nums[i][j] = count++;
}
stratx++;
}//奇数矩阵中间空着,填数;
if((n%2)==1){
nums[n/2][n/2] = count++;
}
return nums;
}
}