Anaconda详细安装使用教程

本文详细介绍了Anaconda的用途,包括包管理和环境管理,解释了为何在已有Python安装时仍需使用Anaconda。提供了从下载、安装到管理包、创建环境的步骤,并给出了在Windows和Linux环境下操作的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微信公众号

关注微信公众号【Microstrong】,我写过四年Android代码,了解前端、熟悉后台,现在研究方向是机器学习、深度学习!一起来学习,一起来进步,一起来交流吧!

本文同步更新在我的微信公众号里,地址:https://mp.weixin.qq.com/s?__biz=MzI5NDMzMjY1MA==&mid=2247484026&idx=1&sn=0ff66328021a4fb6f7411158d6a6a6c0&chksm=ec6533ffdb12bae9c061341fa92852f84da2fdf4ee39113445b22c3050d410a75f002430dbb6#rd

目录:

  1. Anaconda是什么?

  2. 如何安装?

  3. 如何管理包?

  4. 如何管理环境

1.Anaconda是什么?

简单来说,Anaconda是Python的包管理器和环境管理器。先来解决一个初学者都会问的问题:我已经安装了Python,那么为什么还需要Anaconda呢?原因有以下几点:

(1)Anaconda附带了一大批常用数据科学包,它附带了conda、Python和 150 多个科学包及其依赖项。因此你可以用Anaconda立即开始处理数据。

(2)管理包。Anaconda 是在 conda(一个包管理器和环境管理器)上发展出来的。在数据分析中,你会用到很多第三方的包,而conda(包管理器)可以很好的帮助你在计算机上安装和管理这些包,包括安装、卸载和更新包。

(3)管理环境。为什么需要管理环境呢?比如你在A项目中用到了Python2,而新的项目要求使用Python3,而同时安装两个Python版本可能会造成许多混乱和错误。这时候conda就可以帮助你为不同的项目建立不同的运行环境。还有很多项目使用的包版本不同,比如不同的pandas版本,不可能同时安装两个pandas版本。你要做的应该是在项目对应的环境中创建对应的pandas版本。这时候conda就可以帮你做到。

总结:Anaconda解决了官方Python的两大痛点:

(1)提供了包管理功能,Windows平台安装第三方包经常失败的场景得以解决。

(2)提供环境管理功能,解决了多版本Python并存、切换的问题。

2.如何安装?

直接在官网下载安装包,官网地址https://www.anaconda.com/download/。选择Python3.6的安装包进行下载,下载完成后直接安装。安装完成之后会有一个Anaconda Prompt,类似于windows的终端操作,可以输入命令行啦!

### 关于CPU版本Anaconda安装使用教程 #### 初学者逐步指南 对于初学者来说,了解如何在不同操作系统上安装并配置 CPU 版本的 Anaconda 是非常重要的。以下是针对 Windows、Mac 和 Linux 用户的具体说明。 #### 1. 安装过程 下载适合操作系统的 Anaconda Installer 并运行它是一个简单的过程[^1]。确保选择仅限于 CPU 支持的安装包,这通常意味着避免任何标记为 GPU 或 CUDA 的选项。 - **Windows**: 双击 `.exe` 文件启动安装向导,在安装过程中可以选择添加到 PATH 环境变量以便更方便地通过命令提示符访问 Anaconda 工具。 - **macOS**: 执行 `.pkg` 文件,并按照屏幕上的指示完成安装。同样可以考虑将 conda 添加至 shell 初始化脚本中以简化终端中的调用流程[^2]。 - **Linux**: 使用 `bash` 命令执行下载下来的脚本文件来开始安装程序;推荐将其放置在家目录下的隐藏文件夹里(如 ~/.anaconda),这样不会干扰其他软件环境设置。 #### 2. 配置基础应用 一旦成功安装Anaconda 后,则需熟悉其内部所包含的一些核心工具及其功能: - Jupyter Notebook: 提供了一个交互式的计算平台用于数据分析和可视化展示等工作场景下极其有用; - Spyder IDE: 对于习惯传统桌面应用程序界面的人来说可能更加友好一些因为它模仿了许多流行开发环境中常见的布局风格; - Conda Package Manager: 负责管理整个生态系统内的依赖关系以及虚拟环境创建等功能实现自动化处理减少人为错误发生几率的同时也提高了工作效率。 #### 示例代码片段 下面给出一段简单的 Python 脚本来验证当前工作环境下是否已经正确设置了路径等相关参数: ```python import sys print(sys.executable) ``` 如果输出结果显示的是类似于 C:\Users\YourName\Anaconda3\python.exe 这样的绝对地址就表明一切正常! ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值