那些优秀的股票代码

重定向 redirect:可以重定向到任意一个请求中(包括其他项目),地址栏改变

000001 平安银行

000002   万科

000063   中兴

000089  深圳机场

000100  tcl

000333  美的

600000  浦发银行

600004  白云机场

600009  上海机场

600028 中石化

600029  南航

600030  中信证券

600031   三一重工

600036 招商银行

600048  保利

600050  联通

600115   东航

601111  国航

601360   360

### 股票量化交易的开源项目与源代码 在GitHub上,有许多关于股票量化交易的优秀开源项目和源代码可供学习和研究。以下是几个典型的例子: #### 1. **Backtrader** `Backtrader` 是一个用于开发、回测和执行金融策略的强大框架。它提供了丰富的功能模块,能够模拟多种市场条件下的交易行为,并支持自定义指标和信号生成器。 ```python import backtrader as bt class SmaCross(bt.SignalStrategy): params = (('pfast', 10), ('pslow', 30)) def __init__(self): sma_fast = bt.ind.SMA(period=self.p.pfast) sma_slow = bt.ind.SMA(period=self.p.pslow) self.signal_add(bt.SIGNAL_LONG, bt.ind.CrossOver(sma_fast, sma_slow)) cerebro = bt.Cerebro() data = bt.feeds.YahooFinanceData(dataname='MSFT', fromdate=datetime(2020,1,1), todate=datetime(2023,1,1)) cerebro.adddata(data) cerebro.addstrategy(SmaCross) print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) cerebro.run() print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) cerebro.plot() ``` 此代码片段展示了如何利用简单移动平均线交叉策略进行回测[^2]。 --- #### 2. **Zipline** `Zipline` 是由 Quantopian 提供的一个 Pythonic 的算法交易平台,专为回测设计。它的核心理念是让开发者专注于编写逻辑清晰的投资策略,而不是被底层细节所困扰。 ```bash pip install zipline ``` 下面是一个基于 Zipline 的均线突破策略示例: ```python from zipline.api import order_target_percent, symbol, schedule_function, date_rules, time_rules def initialize(context): context.asset = symbol('AAPL') schedule_function(rebalance, date_rules.every_day(), time_rules.market_open(hours=1)) def rebalance(context, data): price_history = data.history(context.asset, 'price', bar_count=50, frequency="1d") short_mavg = price_history.mean() long_mavg = price_history[-20:].mean() current_position = context.portfolio.positions[context.asset].amount if (short_mavg > long_mavg) and current_position == 0: order_target_percent(context.asset, 1.0) elif (short_mavg < long_mavg) and current_position != 0: order_target_percent(context.asset, 0.0) ``` 这段代码实现了简单的均值回归策略并定期调整持仓比例[^3]。 --- #### 3. **PyAlgoTrade** 另一个流行的量化交易库叫做 `PyAlgoTrade` ,它可以用来构建事件驱动型的交易系统。尽管该项目已经停止维护多年,但它仍然具有很高的教育价值。 安装命令如下所示: ```bash pip install pyalgotrade ``` 下面是 PyAlgoTrade 中实现 RSI 指标的样例程序: ```python from pyalgotrade.barfeed import yahoofeed from pyalgotrade.stratanalyzer import returns from pyalgotrade.stratanalyzer import sharpe from pyalgotrade.stratanalyzer import drawdown from pyalgotrade.stratanalyzer import trades from pyalgotrade.talibext import indicator class RSIStrategy(strategy.BacktestingStrategy): def __init__(self, feed, instrument): super(RSIStrategy, self).__init__(feed) self.__instrument = instrument self.setUseAdjustedValues(True) self.__position = None self.__rsi = indicator.RSI(feed[instrument].getCloseDataSeries(), 14) def onBars(self, bars): bar = bars[self.__instrument] if not self.__position: if self.__rsi[-1] is not None and self.__rsi[-1] < 30: sharesToBuy = int(self.getBroker().getCash(False) / bar.getPrice()) self.__position = self.enterLong(self.__instrument, sharesToBuy, True) else: if self.__rsi[-1] is not None and self.__rsi[-1] > 70: self.__position.exitMarket() feed = yahoofeed.Feed() feed.addBarsFromCSV("orcl", "orcl-2000.csv") myStrategy = RSIStrategy(feed, "orcl") myStrategy.run() ``` 上述脚本通过计算相对强弱指数(RSI),判断买入卖出时机[^4]。 --- #### 4. **QuantConnect Lean Engine** Lean 是 QuantConnect 平台的核心引擎,允许用户下载完整的源码并在本地运行自己的算法测试环境。官方仓库地址为 https://github.com/QuantConnect/Lean 。该解决方案特别适合希望深入理解整个工作流程的人群。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值